Личный кабинет

New Technology for Manufacturing Volumetric Blocks – Slipway for Industrial Housing Construction with Flexible Apartmentography

Number of journal: 10-2023
Autors:

Korshunov A.N.,
Filatov E.F.,
Gizzatullin A.R.

DOI: https://doi.org/10.31659/0044-4472-2023-10-28-34
УДК: 624.03

 

AbstractAbout AuthorsReferences
Volumetric housing construction with flexible apartmentography is considered, in the variants of using a volumetric block with a pre-stressed prefabricated monolithic ceiling, in which a prefabricated pre-stressed plate is used. Transformable tooling and technology for the manufacture of a flexible volumetric block are considered. Options for upgrading existing technologies are considered.
A.N. KORSHUNOV1, Design Engineer (а.кThis email address is being protected from spambots. You need JavaScript enabled to view it.);
E.F. FILATOV2, Head of Laboratory (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.R. GIZZATULLIN3, Candidate of Sciences (Engineering), Docent ( This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 JSC «Kazan Giproniiaviaprom» (1, Dementieva Street, Kazan, 420127, Republic of Tatarstan, Russian Federation)
2 LLC «INT-Solushn» (18, Peresveta Street, Bryansk, 241019, Russian Federation)
3 Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. Korshunov A.N., Filatov E.F. Volumetric reinforced concrete block for housing construction with flexible apartment layouts. Flexible form-tooling and a stand for the manufacture of a volumetric block. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-11-18
2. Patent RU218225U1. Ob”emnyi zhelezobetonnyi blok dlya domostroeniya s gibkoi kvartirografiei [Volumetric reinforced concrete block for housing construction with flexible apartment construction]. Korshunov A.N. Declared 27.07.22. Publ. 16.05.2023. Bull. No. 14. (In Russian).
3. Ambartsumyan S.A., Manukyan A.V., Mkrtychev O.V., Andreev M.I. Verification of Calculation Methods Based on Experimental Studies of Fragments of Reinforced Concrete Blocks. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 6, pp. 73–77. (In Russian). DOI: 10.33622/0869-7019.2023.06.73-77
4. Patent RF 2715781. Sposob proizvodstva ob”emnogo modulya [The method of production of the volumetric module]. Meshcheryakov A.S., Ambartsumyan S.A. Declared 19.08.2019. Publ. 03.20. Bull. No. 7. (In Russian).
5. Patent RF 2712845. Sposob izgotovleniya krupnogabaritnogo ob”emnogo modulya [Method of manufacturing a large-sized volumetric module]. Meshcheryakov A.S., Ambartsumyan S.A. Declared 30.5. RU 2712845 “Method of manufacturing a large-sized volumetric module”.
6. Alizade S.A. Volumetric-block house-building: experience and prospects for development. Arkhitektura i dizayn. 2017. No. 1, pp. 38–52. (In Russian).
7. Zhigulina A.Yu., Ponomarenko A.M. Affordable housing from volume blocks. History and modernity. Traditsii i innovatsii v stroitel’stve i arkhitekture. Arkhitektura i dizayn: Dig. of articles; edited by M.I. Balzannikova, K.S. Galitskova, E.A. Akhmedova. Samara, SGASU Publ., 2015, pp. 76–81. (In Russian).
8. Sinоtov V.I., Kolokoltseva N.N. Design and construction of efficient and affordable housing from volumetric blocks. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 3, pp. 20–22. (In Russian).
9. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Construction of structures of modern concrete: defining principles and technological platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
10. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
11. Teshev I.D., Korosteleva G.K., Popova M.A. Space block house prefabrication. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 26–33. (In Russian).
12. Teshev I.D., Korosteleva G.K., Popova M.A., Shchedrin Yu.N. Modernization of housing module prefabrication plants. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 10–13. (In Russian).
13. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI: 10.5937/jaes15-14719
14. Nikolaev S.V. The solution of the housing problem in the Russian Federation on the basis of reconstruction and technical re-equipment of the industrial base of housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 2, pp. 2–5. (In Russian).
15. Nikolaev S.V. Revival of House Building Factories on the Basis of Domestic Equipment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2, pp. 4–9. (In Russian).
16. Yumasheva E.I., Sapacheva L.V. The house-building industry and the social order of time. Stroitel’nye Materialy [Construction Materials]. 2014. No. 10, pp. 3–11. (In Russian).
17. Khubaev A.O., Sahakyan S.S. The practice of using volumetric-block housing construction in Russia. Vestnik Permskogo NIPU. 2020. No. 3 (39), pp. 112–118. (In Russian).
18. Krasinikova N.M., Antyshev D.G., Fathutdinov A.R., Kalmykov D.A., Nekrasov A.B. A new approach to warehousing finished products at precast concrete plants. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 7–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-7-9
19. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A. The effect of polycarboxylate-based superplasticizers on the efficiency of heat treatment of monolithic concrete. Stroitel’nye Materialy [Construction Materials]. 2023. No. 4, pp. 35–41. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-812-4-35-41

For citation: Korshunov A.N., Filatov E.F., Gizzatullin A.R. New technology for manufacturing volumetric blocks – slipway for industrial housing construction with flexible apartmentography. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 28–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-28-34

Robustness of Precast Reinforced Concrete Buildings Made of Industrial Panel-Frame Elements

Number of journal: 10-2023
Autors:

Fedorova N.V.,
Savin S.Yu.,
Kolchunov V.I.,
Moskovtseva V.S.,
Amelina M.A.

DOI: https://doi.org/10.31659/0044-4472-2023-10-20-27
УДК: 624.073

 

AbstractAbout AuthorsReferences
The paper presents a new structural solution of the precast frame for residential and civil multistorey buildings which are manufactured from prefabricated industrial reinforced concrete elements. The precast frame structures include L-shaped and U-shaped precast elements, installed in the longitudinal and transverse directions, hollow-core slabs and bracing perforated beams of the outer contour, on which fencing non-bearing wall structures are supported within each storey. The computational model of the precast building frame was developed using various degrees of discretization at different stages of the analysis. This allowed to obtain both a general data about structural system deformations in the limiting and ultimate states caused by special and emergency actions. As well as, a detailed picture of the stressed state in concrete and reinforcement of structural joint before and after cracking are discussed. The paper provides the results of the comparative analysis of the effectiveness of the proposed structural system application in the mass construction. It has been shown that the application of the proposed structures of panel-frame elements allows considerably reduce the material capacity and cost of the reinforced concrete frame by up to 17,6%, ensuring the mechanical safety of the building.
N.V. FEDOROVA1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.Yu. SAVIN2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.I. KOLCHUNOV1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.S. MOSKOVTSEVA2, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.A. AMELINA2, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10
2. Nikolaev S.V. Construction of panel-monolithic houses from factory-made house kits. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 10, pp. 10–16. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-10-10-16
3. Nikolaev S.V. Innovative replacement of large-panel housing construction by panel-monolithichousing construction (PMHC). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-3-3-10
4. Pakhomova L.A., Meshcheryakov A.S. Aspects of design organization for large-modular housing construction. Sistemnye tekhnologii. 2022. No. 1 (42), pp. 15–21. (In Russian).
5. Shembakov V.A. Possibilities of innovative industrial technology of prefabricated monolithic frame GC “Recon-SMK”. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-32-38
6. Sychev S.A. High-tech construction system for high-speed construction of multifunctional fully assembled buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 43–48 (In Russian).
7. Shembakov V.A. Innovative technologies in housing construction, mastered by GC “Recon-SMK” for 20 years of work in the market of the Russian Federation and the CIS. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 36–43 (In Russian).
8. Korshunov A.N. Large-panel houses of the new generation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 44–46 (In Russian).
9. Mushchanov V.F., Yugov А.М. State and main problems of a construction complex of the Donetsk People’s Republic. Stroitel’stvo i reconstruktcia. 2023. No. 4 (108), pp. 138–148. (In Russian).
10. Lapidus A.A., Ambarcumyan S.A., Dolgov O.S., Kolpakov A.M., Meshcheryakov A.S., Gorbachevskij V.P. Investigation of the influence of technological and functional features of mobile robotic conveyor technological lines on the construction of reinforced concrete walls and ceilings of mobile large-sized modules. Stroitel’noe proizvodstvo. 2022. No. 3, pp. 2–10. (In Russian).
11. Savin S.Yu., Fedorova N.V., Emel’yanov S.G. Survivability analysis of reinforced concrete frameworks of multi-storey buildings made of frame-panel elements using combination of prefabricated and monolithic concrete in case of accidental impacts caused by loss of stability of one of the columns. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 12, pp. 3–7. (In Russian).
12. Travush V.I., Shapiro G.I., Kolchunov V.I., Leont’ev E.V., Fedorova N.V. Design of protection of large-panel buildings against progressive collapse. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-3-40-46
13. Kolchunov V.I., Fedorova N.V., Savin S.YU. Dynamic effects in statically indeterminate physically and structurally nonlinear structural systems. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 9, pp. 42–51. (In Russian).
14. Feng. F.F., Hwang H.J., Yi W.J. Static and dynamic loading tests for precast concrete moment frames under progressive collapse. Engineering Structures. 2020. Vol. 213, pр. 110612.
15. Zhou Y., Hu X., Pei Y., Hwang H.J., Chen T., Yi W., Deng L. Dynamic load test on progressive collapse resistance of fully assembled precast concrete frame structures. Engineering Structures. 2020. Vol. 214, pр. 110675.
16. Lin K., Lu X., Li Y., Guan H. Experimental study of a novel multi-hazard resistant prefabricated concrete frame structure. Soil Dynamics and Earthquake Engineering. 2019. Vol. 119, pр. 390–407.
17. Savin S., Kolchunov V., Fedorova N., Tuyen Vu.N. Experimental and Numerical Investigations of RC Frame Stability Failure under a Corner Column Removal Scenario. Buildings. 2023. Vol. 13 (4), pр. 908. https://doi.org/10.3390/buildings13040908
18. Tamrazyan A.G. Conceptual approaches to robustness assessment of building structures, buildings and facilities. Reinforced concrete structures. 2023. Vol. 3. No. 3, pp. 62–74. (In Russian).
19. Sokolov B.S. Theoretical basis of calculation methods of plug joints of reinforcedconcrete structures of buildings and constructions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 60–63. (In Russian).
20. Fedorova N.V., Savin S.Yu., Kolchunov V.I., Moskov-tseva V.S., Amelina M.A. Building structural system made of industrial frame-panel elements. Stroitel’stvo i rekonstrukciya. 2023. No. 3, pp. 70–81. (In Russian).

For citation: Fedorova N.V., Savin S.Yu., Kolchunov V.I., Moskovtseva V.S., Amelina M.A. Robustness of precast reinforced concrete buildings made of industrial panel-frame elements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 20–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-20-27

Prospects for Precast Concrete for Residential Construction: Design Solutions with Wide Spacing of Load-Bearing Transverse Walls

Number of journal: 10-2023
Autors:

Kurnikov D.V.

DOI: https://doi.org/10.31659/0044-4472-2023-10-14-19
УДК: 624.03

 

AbstractAbout AuthorsReferences
The possibilities of modern industrial housing construction, which completely remove restrictions on the use of precast reinforced concrete, and space-planning and facade solutions used in monolithic housing construction are effectively implemented in industrial universal housing construction, while maintaining undeniable advantages in speed, quality, and low cost, are considered. It is shown that when using the proposed design solution, the construction of a warm contour (frame + external walls) is 3 times faster than a monolithic version and 2 times faster than a conventional large-panel version due to the exclusion of part of the bearing walls, partitions, and the use of large-format floor slabs. It is possible to implement a free layout of apartments (cell 7.2х7.2 m) due to the wide spacing of load-bearing transverse walls and the use of slabs with pre-stressed reinforcement. Elimination of welded joints, use of stainless steel embedded parts, and sealing of joints with non-shrink mortar will ensure a 25% reduction in reinforced concrete consumption per 1 m2 of housing and a 25% reduction in the number of installation elements. The cost of constructing a warm circuit is lower by at least 20% compared to the monolithic option due to the above factors, without loss of architectural attractiveness. Due to the system of horizontal and vertical inter-floor connections of load-bearing elements in the form of bolted connections, it is possible to increase the reliability and safety of such buildings in accident (including emergency) incidents.
D.V. KURNIKOV, Engineer, Managing Partner

LLC «Inarbi» (57, str. 1, Gilyarovskogo Street, Moscow, 129110, Russian Federation)

1. Guryev V.V., Dmitriev A.N., Yakhkind S.I. Experimental and standard design – a strategic vector of development of industrial civil construction. Promyshlennoe i gragdanskoe stroitelstvo. 2022. No. 7, pp. 40–47. (In Russian).
2. Guryev V.V., Yakhkind S.I. The main trends in the development of civil engineering at the present stage. ACADEMIA. Architectura i stroitelstvo. 2022. No. 3, pp. 97–103. (In Russian).
3. Golovin N.G., Fedorov Yu.N., Kozlov A.S. BENPAN – innovation technology of prefabricated low-rise housing construction. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-24-26
4. Yudin I.V., Petrova I.V., Bogdanov V.F. Improvement of constructive solutions, technology and organization of construction of large-panel and panel-frame houses of Volga DSK. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-746-3-4-8
5. Nikolaev S.V. The solution of the housing problem in the Russian Federation on the basis of reconstruction and technical re-equipment of the industrial base of housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 2, pp. 2–5.(In Russian).
6. Nikolaev S.V. Revival of House Building Factories on the Basis of Domestic Equipment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2, pp. 4–9. (In Russian).
7. Yumasheva E.I., Sapacheva L.V. The house-building industry and the social order of time. Stroitel’nye Materialy [Construction Materials]. 2014. No. 10, pp. 3–11. (In Russian).
8. Teshev I.D., Korosteleva G.K., Popova M.A., Shchedrin Yu.N. Modernization of housing module prefabrication plants. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 10–13. (In Russian).
9. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
10. Ambartsumyan S.A., Manukyan A.V., Mkrty-chev O.V., Andreev M.I. Verification of calculation methods based on experimental studies of fragments of reinforced concrete blocks. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 6, pp. 73–77. (In Russian). DOI: 10.33622/0869-7019.2023.06.73-77
11. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
12. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI: 10.5937/jaes15-14719
13. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
14. Rumyantsev E.V., Bayburin A.Kh. The features of using self-compacting fine-grained fresh concrete during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57
15. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14

For citation: Kurnikov D.V. Prospects for precast concrete for residential construction: design solutions with wide spacing of load-bearing transverse walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 14–19. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-14-19

Double-Layer External Panel in Industrial Buildings

Number of journal: 10-2023
Autors:

Nikolaev S.V.

DOI: https://doi.org/10.31659/0044-4472-2023-10-9-13
УДК: 624.03

 

AbstractAbout AuthorsReferences
The use of prefabricated reinforced concrete structures has become more common in the construction of both low-rise and high-rise buildings. The author draws attention to a number of ineffective solutions that were used in low-rise housing construction when using single- and three-layer factory-produced exterior panels. These solutions were implemented during the construction of a cottage settlement in the Moscow region. A detailed analysis of the disadvantages of the method of construction of low-rise panel houses from single- and three-layer panels is carried out. It is shown that the use of two-layer panels of external walls is applied for the first time in low-rise housing construction. The possibility of application in multi-storey and apartment buildings is considered. A variant solution is given for the facade design of panel buildings using plaster layers, plank, thermal panels for bricks or facing tiles.
S.V. NIKOLAEV, Doctor of Sciences (Engineering), Honored Builder of the Russian Federation, Scientific Supervisor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

JSC “TSNIIEPzhilishcha” – Institute of Comprehensive design of residential and public buildings (JSC “TSNIIEPzhilishcha”) (9, bldg.3, Dmitrovskoye Highway, Moscow, 127434, Russian Federation)

1. Guryev V.V., Dmitriev A.N., Yakhind S.I. Experimental and standard design – a strategic vector of development of industrial civil construction. Promyshlennoe i gragdanskoe stroitelstvo. 2022. No. 7, pp. 40–47. (In Russian).
2. Guryev V.V., Yakhkind S.I. The main trends in the development of civil engineering at the present stage. ACADEMIA. Architectura i stroitelstvo. 2022. No. 3, pp. 97–103. (In Russian).
3. Golovin N.G., Fedorov Yu.N., Kozlov A.S. BENPAN – innovation technology of prefabricated low-rise housing construction. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-24-26
4. Nikolaev S.V. Two-layer factory-made exterior panel for low-rise housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-3-10
5. Nikolaev S.V. Monolithic-panel low-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 3, pp. 8–15. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-3-8-15
6. Nikolaev S.V. Construction of low-rise housing from house sets of factory production. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-5-3-8
7. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10
8. Krasheninnikov A.V., Per’kova M.V. Town-planning prospects. Architecturа i stroitelstvo Rossii. 2022. No. 3 (243), pp. 4–7. (In Russian).
9. Davidyuk A.N., Nesvetaev G.V. Large-panel housing construction – an important provision for solving the housing problem In Russia. Stroitel’nye Mate-rialy [Construction Materials]. 2013. No. 3, pp. 24–26. (In Russian).

For citation: Nikolaev S.V. Double-layer external panel in industrial buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 9–13. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-9-13

Evaluation of Waterproofing Systems’s Adhesive Strength

Number of journal: 9-2023
Autors:

Zhukov A.D.,
Bazhenova S.I.,
Stepina I.V.

DOI: https://doi.org/10.31659/0044-4472-2023-9-102-107
УДК: 699.82

 

AbstractAbout AuthorsReferences
Hydrophobization of the surface of the structural material is an effective type of protection of concrete of underground constructions from moistening and damage by water solutions containing aggressive chemical substances. As a rule, the insulation system includes waterproofing material as well as intermediate layer materials. An important factor of durability of the insulation system is the joint work of each of its elements and the base material. The purpose of the research described in the article was the development of methods to optimize the technology of arrangement of repair of waterproofing coatings of underground structures. The research is based on the methodology of determining the adhesive strength of waterproofing coating, based on the determination of the adhesion force at the detachment of insulation layers. The algebraic model of dependence of adhesive strength of waterproofing material on the composition of modified binder and moisture content of the base surface has been developed and its experimental verification has been carried out. The influence of the roughness and cracking of the sedimentation surface on the waterproofing coating has been evaluated. The values of parameters determining the optimum strength characteristics have been established.
A.D. ZHUKOV, Candidate of Science (Engeeniring) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.I. BAZHENOVA, Candidate of Science (Engeeniring) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.V. STEPINA, Candidate of Science (Engeeniring) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Zhukov A.D., Bessonov I.V., Bogomolova L.K., Ivanova N.A., Govryakov I.S. Foamed polymers in insulation systems for structures built on problematic soils. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 54–58. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-54-58
2. Zhukov A.D., Ter-Zakaryan K.A., Bessonov I.V., Semenov V.S., Starostin A.V. Insulation systems for frame cottages. Academia. Arkhitektura i Stroitel’stvo. 2019. No  1, pp. 122–127. (In Russian). DOI: https://doi.org/10.22337/2077-9038-2019-1-122-127
3. Fedosov S.V., Rumyantseva V.E., Konovalova V.S., Evsyakov A.S., Kasyanenko N.S. Modeling of mass transfer dynamics in the processes of liquid corrosion of cement concretes with due regard for the phenomenon of colmatation. Stroitel’nye Materialy [Construction Materials]. 2020. No. 6, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-781-6-27-32
4. Тer-Zakaryan K.A., Zhukov A.D., Bobrova E.Yu., Bessonov I.V., Mednikova E.A. Foam polymers in multifunctional insulating coatings. Polymers. 2021. 13 (21). 3698. DOI: 10.3390/polym13213698
5. Ter-Zakaryan K.A., Zhukov A.D., Bessonov I.V., Bobrova E.Y., Pshunov T.A., Dotkulov K.T. Modified polyethylene foam for critical environments. Polymers. 2022. 14. 4688. DOI: 10.3390/polym14214688
6. Zhukov A., Stepina I., Bazhenova S. Ensuring the durability of buildings through the use of insulation systems based on polyethylene foam. Buildings. 2022. 2 (11). 1937. DOI: 10.3390/buildings12111937
7. Shitikova M.V., Bobrova E.Yu., Popov I.I., Zhukov A.D. Energy efficiency technical thermal insulation. International Multi-Conference on Industrial Engineering and Modern Technologies. 2019. No. 8934917. DOI: 101109/FarEastCon.2019.8934917
8. Sokova S., Smirnova N. Reliability assessment of waterproofing systems of buildings underground parts. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. No. 052028. DOI: 10.1088/1757-899X/365/5/052028
9. Sokova S.D., Smirnova N.V. Technology of reliable waterproofing of underground structures of exploited buildings. Byulleten’ stroitel’noj tekhniki. No. 11. Iss. 1023. 2019, pp. 64–65. (In Russian).
10. Korol E.A., Sokova S.D., Smirnova N.V. Formation of the evaluation criteria of the waterproofing systems effectiveness. Byulleten’ stroitel’noj tekhniki. 2020. No. 4. Iss. 1028, pp. 60–61. (In Russian).
11. Sokova S.D., Smirnova N.V. Integrated protection of underground structures in operation. Nedvizhimost’: ekonomika, upravlenie. 2019. No. 3, pp. 42–44. (In Russian).
12. Kasyanov V.F., Sokova S.D., Kalinin V.M. Measures increasing the exploitation resistance of the underground waterproofing of the buildings. Estestvennye i tekhnicheskie nauki. 2015. No. 10, Iss. 88, pp. 394–396. (In Russian).
13. Astafieva N.S., Popov D.V., Fomina Yu.A., Yakupova G.I. Protection of underground parts of buildings and structures from the impact of groundwater. Regional’noe razvitie. 2014. No. 3–4, pp. 202–205. (In Russian).
14. Barashkova P.S. Waterproofing of basements from groundwater and capillary moisture. Aktual’nye problemy gumanitarnyh i estestvennyh nauk. 2016. No. 9–1, pp. 245–247. (In Russian).

For citation: Zhukov A.D., Bazhenova S.I., Stepina I.V. Evaluation of waterproofing systems’s adhesive strength. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 102–107. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-102-107

Reglamentation of Urban Planning Activities in St. Petersburg in the 18th – 19th Centuries and its Technical Consequences

Number of journal: 9-2023
Autors:

Shashkin A.G.,
Shashkin V.A.

DOI: https://doi.org/10.31659/0044-4472-2023-9-86-101
УДК: 728.03

 

AbstractAbout AuthorsReferences
The technical aspects of the history of the urban development of St. Petersburg are considered, which make it possible to form a general idea of the features and patterns of historical development, which is necessary for assessing the state and deformation behavior of residential buildings erected in the 18th - 19th centuries. On the basis of the works of well-known researchers of the formation of the historical center of the Northern capital, it is demonstrated that the planning of the quarters of the urban environment, the development of individual households was subject to strict regulation in terms of layout, building dimensions in terms of plan and height, which led to the emergence of buildings with certain ratios of facade length to height and width in cross section. For the construction of the capital of the Russian Empire and other historical cities, “exemplary” projects, albums of “exemplary” facades were used, which should have been guided during construction, and a typical division of quarters into separate sections was recommended. Perimeter (“firewall”) development of plots led to the formation of a characteristic type of building with a two-span front structure along the red line of the street and predominantly single-span courtyard buildings forming closed courtyards. At the same time, the front structures, due to the presence of a system of longitudinal and transverse walls, turned out to have significantly greater spatial rigidity than the courtyard ones. It is shown that the urban development of the capital was characterized by a gradual increase in the number of storeys and compaction of building sites, which led to the mutual influence of buildings of a later construction on the previously erected ones.
A.G. SHASHKIN, Doctor of Sciences (Geology and Mineralogy) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. SHASHKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Institute “Georeconstruction” (4, Izmaylovskiy pr. Saint-Petersburg, 190005. Russian Federation)

1. Sementsov S.V. Formation of the principles of preservation of the architectural and urban heritage of St. Petersburg based on the patterns of three-century urban development. Vestnik SPbGU. 2013. Vol. 15. Iss. 2, pp. 190–211. (In Russian).
2. Sementsov S.V. Urban planning component of the residential function of St. Petersburg and the St. Petersburg agglomeration. 1703–2006. Vestnik Sankt-Peterburgskogo universiteta. 2007. Iss. 3, pp. 63–70. (In Russian).
3. Peterburg neuznavaemyi v akvarelyakh F.F. Bagantsa [Petersburg unrecognizable in watercolors by F.F. Bagants]. Saint Petersburg: Kriga, 2005. 96 p.
4. Mintslov S.R. Peterburg v 1903–1910 godakh [Petersburg in 1903–1910]. B.m.: Salamandra P.V.V. 2012. 287  p.
5. Babinovich N.U., Sitnikova E.V. “Exemplary” construction in the cities of Russia and Tomsk. Vestnik TGASU. 2020. Vol. 22. No. 5, pp. 25–35. (In Russian).
6. Gladkikh A.A. Projects of “Exemplary” residential houses by D.A. Trezini in St. Petersburg. Privolzhskii nauchnyi vestnik. 2015. No. 6–1, pp. 32–35. (In Russian).
7. Rebrova R. The Palace of Fyodor Apraksin and the “model house” of J.-B. Leblon: the activity of a French architect in St. Petersburg according to new sources. Quaestio Rossica. 2018. Vol. 6. No. 1, pp. 130–138. (In Russian).
8. Shcheboleva E.G., Rudchenko V.M. Architecture of the province. Istoriya russkogo iskusstva. 2011. Vol. 14, pp. 165–259. (In Russian).
9. Yukhneva E.D. Peterburgskie dokhodnye doma. Ocherki iz istorii byta. Neizvestnye fakty i novye podrobnosti [Petersburg apartment houses. Essays from the history of everyday life. Unknown facts and new details]. Moscow: Tsentrpoligraf. 2021. 496 p.
10. Klimenko Yu.G. Komissiya o stroenii Moskvy. Arkhitekturnye yubilei. Kalendar’ pamyatnykh dat 2012–2016 [Commission on the structure of Moscow. Architectural anniversaries. Calendar of memorable dates 2012–2016]. Moscow: Izdatel’skii dom Rudentsovykh. 2012, pp. 123–125.
11. Kuznetsov D.I. Betankur [Betancourt]. Moscow: Veche. 2013. 480 p.
12. Sementsov S.V. St. Petersburg at the end of the XIX century: spontaneous development or preservation of traditions of the ensemble solution of the urban environment. Vestnik grazhdanskikh inzhenerov. 2017. No. 6 (65), pp. 55–64. (In Russian).
13. Sharlygina K.A. Experience of reconstruction of historical residential buildings of St. Petersburg. St. Petersburg: Petropolis. 2019. 136 p.
14. Golovina S.G. Architectural and structural features of residential buildings in St. Petersburg of the second half of the XVIII century. Gradostroitel’stvo i arkhitektura. 2020. Vol. 10. No. 2, pp. 71–77. (In Russian).
15. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Geotechnical support of urban development. Saint Petersburg: «Stroiizdat Severo-Zapad», «Georekonstruktsiya». 2010. 551 p.

For citation: Shashkin A.G., Shashkin V.A. Reglamentation of urban planning activities in St. Petersburg in the 18th – 19th centuries and its technical consequences. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 86–101. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-86-101

Assessment of Pile-Slab Foundation Settlement in Pseudo Non-Linear Formulation

Number of journal: 9-2023
Autors:

Sidorov V.V.,
Almakaeva A.S.

DOI: https://doi.org/10.31659/0044-4472-2023-9-74-85
УДК: 621.6.072

 

AbstractAbout AuthorsReferences
An analytical solution of the problem of interaction between a pile-slab foundation and a 2-layer linearly deformable ground foundation is proposed. To take into account the nonlinear behavior of soils in the elastic formulation, a graph-analytical method was proposed, which limits the bearing capacity of a pile on the lateral surface to the strength value of the adjacent soil and further redistribution of the applied load on the pile toe. In this work, a comparative analysis of the proposed modified analytical solution of the problem, taking into account the nonlinear operation of soils in an elastic formulation, with a numerical solution in an elastic-plastic formulation, is carried out, and the area of application of the proposed modified analytical solution, which takes into account the described mechanism of the nonlinear operation of the soil, has been studied. Numerical modeling was performed in the geotechnical software package Plaxis 2d, the soil behavior was described by the elastic-plastic Mohr-Coulomb model. According to the results of analytical and numerical calculations for various values of soil strength, graphs of the dependence of settlement on loads were constructed, which showed that the qualitative and quantitative convergence of the results is influenced by the strength of the soil. The results of analytical and numerical calculations at different values of soil strength showed that the qualitative and quantitative convergence of the results were influenced by soil strength. At high values of soil strength, the convergence of solutions is higher, however, at low values of strength the application of the proposed modified analytical solution is limited and its refinement is required.
V.V. SIDOROV, Candidate of Sciences (Engineering), Docent of the Department MGiG NIU MGSU, Research Center “Geotechnics named after Z.G. Ter-Martirosyan”,
A.S. ALMAKAEVA, Junior Researcher of Research Center “Geotechnics named after Z.G. Ter-Martirosyan” (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Ter-Martirosyan Z.G., Nguyen Zang Nam. Interaction of piles of large length with a heterogeneous array, taking into account the nonlinear and rheological properties of soils. Vestnik MGSU. 2008. No. 2, pp. 3–14. (In Russian).
2. Ter-Martirosyan Z.G., Sidorov V.V., Strunin P.V. Calculation of the stress-strain state of a single compressible barrete and pile when interacting with a soil mass. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 9, pp. 18–21. (In Russian).
3. Ter-Martirosyan Z.G., Sidorov V.V., Strunin P.V. Theoretical foundations for calculating deep foundations – piles and barrett. Bulletin of PNRPU. Construction and architecture. 2014. No. 2, pp. 190–206. (In Russian).
4. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Akuletsky A.S. Stress-strain state of weak and bulk soils reinforced with reinforced concrete and soil piles, respectively. Vestnik MGSU. 2021. Vol. 16. No. 9, pp. 1182–1190. (In Russian). DOI: 10.22227/1997-0935.2021.9.1182-1190
5. Ter-Martirosyan Z.G., Akuletsky A.S. Interaction of a pile of great length with the surrounding multi-layer and underlying soils. Vestnik MGSU. 2021. Vol. 16. No. 2, pp. 168–175. (In Russian). DOI: 10.22227/1997-0935.2021.2.168-175
6. Ter-Martirosyan Z.G., Buslov A.S., Ter-Martirosyan A.Z., Sidorov V.V. Interaction of a pile with a two-layer base, taking into account the nonlinear properties of soils. Estestvennye i tekhnicheskie nauki. 2014. No. 11–12. (In Russian).
7. Ter-Martirosyan Z.G., Strunin P.V., Chinh Thuan Viet. Compressibility of the pile material in determining the settlement in the pile foundation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 10, pp. 13–15. (In Russian).
8. Mirsayapov I.T., Garaev A.I. Features of the calculation of the stress-strain state of slab-pile foundations under regime cyclic and cyclic loading. Izvestiya KGASU. 2022. No. 1, pp. 6–18. (In Russian). DOI: 10.52409/20731523_2022_1_6
9. Shakirov M.I. Deformations of soil foundations of slab-pile foundations under cyclic loading. Izvestiya KGASU. 2022. No. 1, pp. 19–28. (In Russian). DOI: 10.52409/20731523_2022_1_19
10. Ter-Martirosyan Z.G., Akuletsky A.S. Interaction of a pile of large length with a multilayer soil mass, taking into account the elastic and rheological properties and hardening. Vestnik MGSU. 2021. Vol. 16. No. 5, pp. 608–614. (In Russian). DOI: 10.22227/1997-0935.2021.5.608-614
11. Ter-Martirosyan A.Z., Ter-Martirosyan Z.G., Sidorov V.V. Numerical simulation of the structures bases stress-strain state taking into account the time factor // IOP Conference Series: Materials Science and Engineering. 2018. Vol. 456. 012094. DOI: 10.1088/1757-899X/456/1/012094.
12. Ter-Martirosyan Z.G., Sidorov V.V., Ter-Martirosyan K.Z. Creep and long-term bearing capacity of a long pile immersed in an array of clay soil. Vestnik MGSU. 2013. No. 1, pp. 109–115. (In Russian).
13. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Ermoshina L.Yu. Settlement and long-term bearing capacity of piles taking into account the rheological properties of soils. Construction and Geotechnics. 2022. Vol. 13. No. 1, pp. 5–15. (In Russian). DOI: 10.15593/2224-9826/2022.1.01
14. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Manukyan A.V., Angelo G.O. Interaction of a pile-drain with the surrounding compacted clay soil and grillage, taking into account the time factor. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 26–29. (In Russian).
15. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Angelo G.O. Interaction of a non-filtering crushed stone pile (column) with the surrounding consolidating soil and grillage as part of a pile-slab foundation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 4, pp. 19–23. (In Russian). DOI: 10.31659/0044-4472-2019-4-19-23
16. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Angelo G.O. Interaction of a crushed stone filter pile with the surrounding water-saturated clay soil and grillage as part of a pile-slab foundation. Geotechnics. 2019. Vol. 11. No. 1, pp. 36–43. (In Russian). DOI: 10.25296/2221-5514-2019-11-1-36-43
17. Stepanischev K.Yu., Sidorov V.V. Experimental and numerical studies of the stress-strain state of a homogeneous soil massif interacting with a single barrett. Geotechnical. 2017. No. 2, pp. 50–55. (In Russian).
18. Sun Yong Kwon, Mintaek Yoo. Evaluation of dynamic soil-pile-structure interactive behavior in dry sand by 3D numerical simulation. Applied Sciences. 2019. Vol. 9. Article number 2612. DOI: 10.3390/app9132612
19. Gotman A.L., Gavrikov M.D. Investigation of the operation features of vertically loaded long bored piles and their calculation. Construction and Geotechnics. 2021. Vol. 12. No. 3, pp. 72–83. (In Russian). DOI: 10.15593/2224-9826/2021.3.08
20. Shemenkov Yu.M., Glazachev A.O. Calculation of bored piles in clay soils according to static sounding data. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 9, pp. 58–59. (In Russian).
21. Isaev O.N., Sharafutdinov R.F. Studies of soil resistance to shear along the contact surface of structures. Soil Mechanics and Foundation Engineering. 2020. No. 2, pp. 23–30. (In Russian).
22. Vasenin V.A. Numerical modeling of tests of bored piles and barrettes for the construction of a high-rise building in St. Petersburg. Geotechnics. 2010. No. 5, pp. 38–47. (In Russian).
23. Eid H.T., Amarasinghe R., Rabie K.H, Wijewickreme D. Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses. Canadian Geotechnical Journal. 2015. Vol. 52. No. 2, pp. 198–210. DOI: 10.1139/cgj-2014-0019
24. Mohammadi A., Ebadi T., Eslami A. Shear strength behavior of crude oil contaminated sand-concrete interface. Geomechanics and Engineering. 2017. Vol. 12. No. 2, pp. 211–221. DOI: 10.12989/GAE.2017.12.2.211
25. Ter-Martirosyan A.Z., Sidorov V.V., Almakaeva A.S. Peculiarities and difficulties in determining the contact strength of soil and structural materials. Geotechnics. 2019. Vol. 11. No. 4, pp. 30–40. (In Russian). DOI: 10.25296/2221-5514-2019-11-4-30-40
26. Shulyatiev O.A., Dzagov A.M., Minakov D.K. Changes in the stress-strained soil mass as a result of the installation of bored piles and barrettes. Bulletin of the Research Center “Construction”. 2022. Vol. 34. No. 3, pp. 26–44. DOI: 10.37538/2224-9494-2022-3(34)-26-44
27. Katzenbakh R., Leppla Sh. Experience in optimizing the cost of high-rise building foundations. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 5, pp. 7–13. (In Russian).

For citation: Sidorov V.V., Almakaeva A.S. Assessment of pile-slab foundation settlement in pseudo non-linear formulation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 74–85. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-74-85

The Actual Volume Loss of Soil Coefficient for Tunnels in Cohesive and Rock Soils

Number of journal: 9-2023
Autors:

Ter-Martirosyan A.Z.,
Cherkesov R.H.,
Isaev I.O.,
Rud V.V.

DOI: https://doi.org/10.31659/0044-4472-2023-9-61-73
УДК: 624.19

 

AbstractAbout AuthorsReferences
The rapid development of underground spaces presents the challenge of obtaining realistic predictions of additional deformations during tunneling works. The obtained results must adequately reflect the need for deformation control and implementation of emergency measures. Insufficient or, conversely, overestimated results can lead to accidents or a lack of economic efficiency of the project. When assessing the impact, it is necessary to take into account the volume loss of soil coefficient (Cref), a parameter influencing the calculated values. However, its magnitude, as presented in the current normative documentation, is significantly overstated, which leads to an increase in additional calculated settlements of buildings and an enlargement of the calculated influence zone. In this study, using the construction of a new branch line of the Moscow Metro as an example, the authors performed a back analysis to adjust the volume loss of soil coefficient for tunnels with a diameter of 6 m in dispersion soils, as well as in cases where the face consists of multiple soil types, including rock soils. It is worth noting that the calculated volume loss of soil coefficient is a normalized parameter that takes into account the shield obliquity and the radial gap, while ensuring the stability of the face. Additionally, a comparison was made between the maximum additional displacements of the monitoring object and the pressure balance at the considered point. Based on the research findings, recommendations have been provided for determining the magnitude of the parameter in planar designs: Cref is equal to 1.2 for sand and 0.7 for clay. The analysis results of the correlation between additional displacements and the pressure balance showed that insufficient pressure balance leads to face instability of the soil and, consequently, exceeds the predicted values. In this study, the authors have published a summary table of volume loss of soil coefficients, which serves as a successful tool for prediction when combined with a well-selected pressure balance value. Additionally, recommendations are provided for assigning and considering the working condition coefficient
A.Z. TER-MARTIROSYAN1, Doctor of Sciences (Engineering), Vice-Rector (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.H. CHERKESOV2, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.O. ISAEV2, Director of Scientific and Technical Activities (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. RUD1, postgraduate of department of Soil Mechanics and Geotechnics

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 LLC Institute “Mosinzhproekt” (4/1, Sverchkov Lane, Moscow, 101000, Russian Federation)

1. Анищенко В.И., Атрушкевич В.А. Разработка структурной схемы для систем грунтопригруза при строительстве закрытых горных выработок и подходов прямоугольного сечения к продуктивным пластам через аллювиальные и смешанные геологические формации механизированным способом // Вестник Кузбасского государственного технического университета. 2019. № 1. С. 66–77. DOI:https://doi.org/10.26730/1999-4125-2019-1-66-77
1. Anishchenko V.I., Atrushkevich V.A. Development of a structural scheme for soil-loading systems during the construction of closed mine workings and approaches of rectangular cross section to productive strata through alluvial and mixed geological formations in a mechanized way. Vestnik KuzGTU. 2019. No. 1, pp. 66–77. (In Russian). DOI: https://doi.org/10.26730/1999-4125-2019-1-66-77
2. Мазеин С.В. Приборный контроль, прогноз и регулирование рабочих параметров щитовой проходки // Горный информационно-аналитический бюллетень. 2011. № 3. С. 90–96.
2. Mazein S.V. Instrument control, forecasting, and regulation of working parameters of the shield driving. Gorny informatsionno-analiticheskiy bulletin. 2011. No. 3, pp. 90–96. (In Russian).
3. Фугенфиров А.А. Строительство транспортных тоннелей: Учебное пособие. Омск: СибАДИ, 2007. 306 с.
3. Fugenfirov A.A. Stroitel’stvo transportnyh tonnelej: uchebnoe posobie [Construction of transport tunnels: a study guide]. Omsk: SibADI. 2007. 306 p.
4. Guglielmetti V., Grasso P., Mahtab A., Xu S. Mechanized Tunnelling in Urban Areas: Design methodology and construction control (1st ed.). CRC Press. 2007. 528 с. DOI: https://doi.org/10.1201/9780203938515
5. Мазеин С.В. Оперативный контроль пористости грунта на тоннельной щитовой проходке // Горный информационно-аналитический бюллетень. 2009. № 3. С. 106–115.
5. Mazein S.V. Real-time monitoring of soil porosity in tunneling using a shield driving method. Gorny informatsionno-analiticheskiy bulletin. 2009. No. 3, pp. 106–115. (In Russian).
6. Mollon G., Dias D., Soubra A.-H. Probabilistic analyses of tunneling-induced ground movements. Acta Geotechnica. 2013. Vol. 8, pp. 181–199. DOI: https://doi.org/10.1007/s11440-012-0182-7
7. Wang F., Du X., Li P. Predictions of ground surface settlement for shield tunnels in sandy cobble stratum based on stochastic medium theory and empirical formulas. Underground Space. 2023. Vol. 11, pp. 189–203. DOI: https://doi.org/10.1016/j.undsp.2023.01.003
8. Lavasan А.А., Zhao C., Barciaga T., Schaufler A., Steeb H, Schanz Т. Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotechnica. 2018. Vol. 13. No. 2, pp. 671–691. DOI: https://doi.org/0.1007/s11440-017-0595-4
9. Скворцов А.А. Оценка влияющих факторов на итоговую величину строительного зазора // Горный информационно-аналитический бюллетень. 2012. № 8. С. 129–133.
9. Skvorcov A.A. Estimation of influential factors on the final magnitude of construction clearance. Gorny informatsionno-analiticheskiy bulletin. 2012. No. 8, pp. 129–133. (In Russian).
10. Attewel P.B., Yeates J., Selby A.R. Soil movements inducted by tunneling and their effects on pipelines and structure. NY.: Glasgow and London Published in the USA by Chapman and Hall. 1986. 325 p.
11. Li Z., Lv J., Xie X., Fu H., Huang J., Li Z. Mechanical characteristics of structures and ground deformation caused by shield tunneling under-passing highways in complex geological conditions based on the MJS method. Applied Sciences. 2021. Vol. 11. No. 19, pp. 9323. DOI: https://doi.org/10.3390/app11199323
12. Boone S., Artigiani E., Shirlaw J.N., Ginanneschi R., Leinaala T. Use of ground conditioning agents for Earth Pressure Balance machine tunneling. In Congres International de Chambéry–Octobre. Chambery, France. 2005, pp. 313–319.
13. Anagnostou G., Kovari K. Face stability conditions with earth-pressure-balanced shields. Tunnelling and Underground Space Technology. 1996. Vol. 11. No. 11, pp. 165–173.
14. Park B., Lee C., Choi S., Kang T., Chang S. Discrete-element analysis of the excavation performance of an EPB shield TBM under different operating conditions. Applied Sciences. 2021. No. 11, pp. 5119. DOI: https://doi.org/10.3390/app11115119
15. Liu H., Shi J., Li J., Liu C. Investigation on the Influence Caused by Shield Tunneling: WSN Monitoring and Numerical Simulation. Advances in Civil Engineering. 2021, pp. 1–11. DOI: https://doi.org/10.1155/2021/6620706
16. Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Shishkina V.V. Surface Settlement during Tunneling: Field Observation Analysis. Applied Sciences. 2022. Vol. 12, pp. 9963. DOI: https://doi.org/10.3390/app12199963
17. Nuttens T., Stal C., Backer H., Schotte K., Bogaert P., Wulf A. Methodology for the ovalization monitoring of newly built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium). Automation in Construction. 2013. Vol. 43, pp. 1–9. DOI: https://doi.org/10.1016/j.autcon.2014.02.017
18. Bowers K.H., Hiller D.M. Ground movement over three years at the Heathrow Express Trial Tunnel. Geotechnical aspects of underground construction in soft ground. 1996, pp. 647–652.
19. Li L., Li J., Shi Z., Li L., Li M., Jin D., Dong G. Prediction of surface settlement induced by large-diameter shield tunneling based on machine-learning algorithms. Geofluids. 2022. Vol. 2022, pp. 1–13. DOI: https://doi.org/10.1155/2022/4174768
20. Wood A.M. The Circular Tunnel in Elastic Ground. Geotechnique. 1975. Vol. 25, pp. 115–127. DOI: https://doi.org/10.1680/geot.1975.25.1.115
21. Verruijt A., Booker J.R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique. 1996. Vol. 46. No. 4, pp. 753–756.
22. Loganathan N., Poulos H. G. Analytical Prediction for Tunneling-Induced Ground Movements in Clays. Journal of Geotechnical and Geoenvironmental Engineering. 1998. Vol. 124, pp. 846–856. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
23. Lee K. M., Rowe R. K., Lo, K. Y. Subsidence owing to tunnelling. I: Estimating the gap parameter. Canadian Geotechnical Journal. 1992. Vol. 29. No. 6. DOI: https://doi.org/10.1139/t92-104
24. Park K-H. Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and Underground Space Technology. 2005. Vol. 20, pp. 249–261. DOI: https://doi.org/10.1016/j.tust.2004.08.009
25. Verruijt A. Complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics. 1997. Vol. 21, pp. 77–89.
26. Лиманов Ю.А. Осадки земной поверхности при сооружении тоннелей в кембрийских глинах. Л.: ЛИИЖТ, 1957. 238 с.
26. Limanov Yu.A. Osadki zemnoj poverhnosti pri sooruzhenii tonnelej v kembrijskih glinah [Subsidence of earth’s surface in the construction of tunnels in Cambrian clays]. Leningrad: LIIZhT, 1957. 238 p.
27. Peck R B. Deep excavation and tunnelling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Sociedad Mexicana de Mecanica. Mexico City, Mexico. 1969, pp. 147–150.
28. Moller S.C. Tunnel induced settlements and structural forces in linings. D.Sc. Thesis. Stuttgart, Germany. 2006. 174 p.
29. Kim C.Y., Bae G.J., Hong S.W., Park C.H., Moon H.K., Shin H.S. Neural network based prediction of ground surface settlements due to tunneling. Computers and Geotechnics. 2001. Vol. 28. Iss. 6–7, pp. 517–547. DOI: https://doi.org/10.1016/S0266-352X(01)00011-8. 2001
30. Huang H., Chang J., Zhang D., Zhang J., Wu H., Li G. Machine learning-based automatic control of tunneling posture of shield machine. Journal of Rock Mechanics and Geotechnical Engineering. 2022. Vol. 14. Iss. 4, pp. 1153–1164. DOI: https://doi.org/10.1016/j.jrmge.2022.06.001
31. Панжин А.А., Панжина Н.А. Деформационный мониторинг воздействия строительства метрополитена на здания и сооружения. Проектирование, строительство и эксплуатация комплексов подземных сооружений. Труды VI Международной конференции. Екатеринбург, 2019. С. 4–9.
31. Panzhin A.A., Panzhina N.A. Deformation monitoring of the impact of metro construction on buildings and structures. Design, Construction, and Operation of Underground Complexes. Proceedings of the VI International Conference. Ekaterinburg. 2019, pp. 4–9. (In Russian)
32. Zhang Z. X., Liu C., Huang X. Numerical analysis of volume loss caused by tunnel face instability in soft soils. Environmental Earth Sciences. 2017. Vol. 76, pp. 1–19. DOI: https://doi.org/10.1007/s12665-017-6893-1
33. Alsirawan R., Sheble A., Alnmr A. Two-dimensional numerical analysis for TBM tunneling-induced structure settlement: a proposed modeling method and parametric study. Infrastructures. 2023. Vol. 8 (5), pp. 88. DOI: https://doi.org/10.3390/infrastructures8050088
34. Sharafutdinov R.F., Isaev O.N., Zakatov D.S. A study of the ground volume loss modeling technique influence the soil displacement in course of shield tunneling. 2023. C. 1042–1051. DOI: https://doi.org/10.1201/9781003299127-147
35. Тер-Мартиросян А.З., Бабушкин Н.Ф., Исаев И.О., Шишкина В.В. Определение расчетного коэффициента перебора путем анализа данных мониторинга // Геотехника. 2020. Т. 12. № 1. C. 6–14. DOI: https://doi.org/10.25296/2221-5514-2020-12-1-6-14
35. Ter-Martirosyan A.Z., Babushkin N.F., Isaev I.O., hishkina V.V. Determining the actual ground loss of soil by analyzing monitoring data. Geotechnica. 2020. Vol. 12. No. 1, pp. 6–14. (In Russian). DOI: https://doi.org/10.25296/2221-5514-2020-12-1-6-14
36. Тер-Мартиросян А.З., Исаев И.О., Алмакаева А.С. Определение фактического коэффициента перебора (участок «Стахановская улица» – «Нижегородская улица») // Вестник МГСУ. 2020. Т. 15. Вып. 12. С. 1644–1653. DOI: https://doi.org/10.22227/1997-0935.2020.12.1644-1653
36. Ter-Martirosyan A.Z., Isaev I.O., Almakaeva A.S. Identification of the actual excess excavation ratio (Stakhanovskaya street – Nizhegorodskaya street site). Vestnik MGSU. 2020. Vol. 15, Iss. 12, pp. 1644–1653. (In Russian). DOI: https://doi.org/10.22227/1997-0935. 2020.12.1644-1653
37. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В. Определение фактического коэффициента перебора (участок «Косино» – «Юго-Восточная»). Construction and Geotechnics. 2021. Т. 12. № 2. С. 5–14. DOI: https://doi.org/10.15593/2224-9826/2021.2.01
37. Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O., Shishkina V.V. Determination of the actual excess excavation ratio (section “Kosino” – “Yugo-Vostochnaya”). Construction and Geotechnics. 2021. Vol. 12, No 2, pp. 5–14. (In Russian). DOI: https://doi.org/10.15593/2224-9826/2021.2.01
38. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В. Определение фактического коэффициента перебора в скальных грунтах // Жилищное строительство. 2021. № 9. С. 3–9. DOI: https://doi.org/10.31659/0044-4472-2021-9-3-9
38. Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O., Shishkina V.V. Determination of the actual outbreak ratio in rocky soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 9, pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-9-3-9
39. Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Rud V.V., Ambrushkevich M.I. Determination of parameters of the boundaries of the computational model for assessing the impact on the surrounding development from tunneling. International Journal for Computational Civil and Structural Engineering. 2023. Vol. 19. No. 2, pp. 95–108. DOI: https://doi.org/10.22337/2587-9618-2023-19-2-95-108
40. Воробьев Л.А., Чеботаев В.В. Определение давления пригруза при проходке тоннелей щитами с пеногрунтовым или бентонитовым креплением забоя. Труды международной научно-практической конференции «Тоннельное строительство России и стран СНГ в начале века: опыт и перспективы». М.: ТАР, 2002. C. 122–129.
40. Vorob’ev L.A., Chebotaev V.V. Determination of face pressure in shield tunneling with foam-soil or bentonite support systems. Proceedings of the International Scientific-Practical Conference ‘Tunnel Construction in Russia and CIS Countries in the Beginning of the Century: Experience and Perspectives’. Moscow, TAR, 2002, pp. 122–129. (In Russian).

For citation: Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Rud V.V. The actual volume loss of soil coefficient for tunnels in cohesive and rock soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 61–73. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-61-73

Features of the Calculation of Engineering Preparation in the Territory with Active Tectonic Processes

Number of journal: 9-2023
Autors:

Anzhelo G.O.,
Sidorov V.V.,
Shebunyaev A.N.

DOI: https://doi.org/10.31659/0044-4472-2023-9-53-60
УДК: 699.841

 

AbstractAbout AuthorsReferences
The article deals with the issues of computational justification of an industrial facility, the uniqueness of which lies in its location in a territory with active tectonic processes. Taking into account the complexity of the relief of the construction area of the facility, which is characterized by a significant difference in absolute elevations, the issues of determining the stability of the engineering preparation of the territory, as well as the bearing capacity and stress-strain state of the foundation of the structure under the application of static, seismic and tectonic effects are considered. The study of the influence of hazardous effects was carried out by a numerical method using a specialized software package PLAXIS in a three-dimensional formulation. Seismic loading was specified as an equivalent quasi-static loading, corresponding to the maximum intensity of the object’s territory. Tectonic impacts were set in the form of prescribed displacements in accordance with the features of the location of faults and the rate of slow displacements of tectonic units, which were studied in the course of specialized surveys. The performed calculations, taking into account seismic and tectonic impacts, showed a significant effect of the first impact on the stability of the constructed arrays of engineering preparation of the object in the form of a significant drop in the stability coefficient, and the second in the form of large additional vertical displacements of the soil mass, which is the soil base of the industrial facility foundations. An analysis of the performed numerical calculations shows that even in the case of slow shear tectonic displacements of up to 250 mm for 50 years, it leads to large displacements at the top of the embankments being erected for engineering preparation, and hence to significant impacts on the designed structures of the industrial structure itself. The distribution iso-fields of such movements along the massifs of embankments have been obtained, which will make it possible to take compensatory measures to equalize uneven movements that will be implemented for a long time.
G.O. ANZHELO, Candidate of Sciences (Engineering), Head of SEC “Geotechnics” named after Z.G. Ter-Martirosyan, Associate Professor of the Department of MGIG NRU MGSU (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. SIDOROV, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.N. SHEBUNYAEV, Postgraduate

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Кузьмин Ю.О. Современная геодинамика разломов и парадоксы скоростей деформаций // Физика Земли. 2013. № 5. С. 28–46.
1. Kuzmin Yu.О. Modern fault geodynamics and paradoxes of deformation rates. Physica Zemli. 2013. No. 5, pp. 28–46. (In Russian).
2. Никонов А.А. Активные разломы: определение и проблемы выделения // Геоэкология. 1995. № 4. С. 16–27.
2. Nikonov А.А. Active faults: definition and problems of isolation. Geoecology. 1995. No. 4, pp. 16–27. (In Russian).
3. Трифонов В.Г., Кожурин А.И. Проблемы изучения активных разломов // Геотектоника. 2010. № 6. С. 79–98.
3. Trifonov V.G., Kojurin А.I. The problems of active faults studying. Geotectonika. 2010. No. 6, pp. 79–98. (In Russian).
4. Runge H., Balss U., Suchandt S., Eineder M. Tectonic shift measurement with Geodetic SAR Processing. Proceedings of the IGARSS 2019. 2019, pp. 9593–9595. DOI: 10.1109/IGARSS.2019.8900059
5. Sebela S., Turk J., Mulec J., Kostak B., Stemberk J. Statistical evaluation of the 3D monitoring of displacements of dinaric fault zone in Postojna cave, Slovenia. Acta Geodynamica et Geomaterialia. 2009. Vol. 6 (2), pp. 163–176.
6. Becker A., Häuselmann P., Eikenberg J., Gilli E. Active tectonics and earthquake destructions in caves of northern and central Switzerland. International Journal of Speleology. 2012.Vol. 41, pp. 35–49.
7. Кучай О.А., Дядьков П.Г. Оценка характера тектонического смещения в зонах разломов Алтая по данным о механизмах очагов землетрясений // Геофизические технологии. 2018. T. 4. С. 4–9.
7. Kuchai О.А., Dyad’kov P.G. Assessment of the character of tectonic displacement in the Altai fault zones according to the data on earthquake source mechanisms. Geophysicheskie technologii. 2018. Vol. 4, pp. 4–9. (In Russian).
8. Arrowsmith J.R., Polland D.D., Rhodes D.D. Hillslope development in areas of active tectonics. Journal of geophysical research: solid Earth. 1996. Vol. 101. Iss. B3, pp. 6255–6275.
9. Faivre S., Reiffsteck P. From doline distribution to tectonics movements example of the Velebit Mountain Range, Croatia. Acta Carsologica. 2002. Vol. 31, No. 3, pp. 139–154.
10. Scheidegger A.E. Finite strain in tectonic deformations. Canadian journal of physics. 2011. Vol. 40 (6), pp. 761–768.
11. Shigemitsu Y., Ishitsuka K., Lin W. Surface displacements near active faults in Hanshin area estimated by persistent scatterer SAR interferometry. Journal of the Japan society of engineering geology. 2022. Vol. 63 (2), pp. 49–63.
12. Zaccagnino D., Doglioni C. Earth gradients as the engine of plate tectonics and earthquakes. La Rivista del Nuovo Cimento. 2022. Vol. 45, pp. 801–881.

For citation: Anzhelo G.O., Sidorov V.V., Shebunyaev A.N. Features of the calculation of engineering preparation in the territory with active tectonic processes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 53–60. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-53-60

Methods of Ultrasonic Quality Control of Work on Jet Grouting of Soils

Number of journal: 9-2023
Autors:

Ovchinnikov N.M.,
Gladkov I.L.,
Bartolomey I.L.

DOI: https://doi.org/10.31659/0044-4472-2023-9-48-52
УДК: 624.15

 

AbstractAbout AuthorsReferences
One of the promising directions for the development of jet cementation technology is the expansion of quality control methods that make it possible to control the strength and deformation characteristics of soil cement using non-destructive methods, as well as to evaluate the continuity of horizontal and vertical impervious curtains before excavating the soil in the pit. An important step in the application of ultrasonic non-destructive testing methods is the development of calibration dependencies to determine the deformation modulus and uniaxial compressive strength of soil cement depending on the speed of propagation of the sound wave in the body of the soil-cement column.
N.M. OVCHINNIKOV1, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.L. GLADKOV2, Technical Director (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.L. BARTOLOMEY2, Candidate of Sciences (Engineering), Chief Designer(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Perm National Research Polytechnic University (29, Komsomolskiy Prospect, Perm, 614990, Russian Federation)
2 LLC “GeoSpetsTekhnologii” (3, Sovetskaya Street, Perm, 614045, Russian Federation)

1. Konyukhov D.S. Basic principles of complex development of underground space during renovation of residential buildings in Moscow. Metro i tonneli. 2019. No. 2, pp. 38–40. (In Russian).
2. Mangushev R.A., Nikiforova N.S. ekhnologicheskie osadki zdanii i sooruzhenii v zone vliyaniya podzemnogo stroitel’stva [Technological precipitation of buildings and structures in the zone of influence of underground construction]. Moscow: ASV. 2017. 168 p.
3. Zuev S.S., Kamenskikh E.M., Makovetskiy O.A. On the possibility of applying the technology of jet grouting of soil in the zone of permafrost soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 32–39. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-32-39
4. Ilichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of russian megacities underground space. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, pp. 17–20. (In Russian).
5. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
6. Ter-Martirosian A.Z., Kivluik V.P., Isaev I.O., Shishkina V.V. Analysis of the calculated prerequisites for the geotechnical forecast of new construction on the surrounding buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 57–66. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-57-66
7. Sokolov N.S., Sokolov S.N., Sokolov A.N. Technology for the installation of a monolithic reinforced concrete grillage in cramped conditions of a functioning facility. Stroitel’nye Materialy [Construction Materials]. 2023. No. 7, pp. 12–16. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-815-7-12-16
8. Bayesteha H., Sabermahani M. Field study on performance of jet grouting in low water content clay. Engineering Geology. 2020. Vol. 264. DOI: https://doi.org/10.1016/j.enggeo.2019.105314
9. Zuev S.S., Zaytseva E.V., Makovetskiy O.A. The arrangement of a modified soil layer with specified physical and mechanical characteristics at the construction of multi-storey buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 9, pp. 17–26. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-9-17-26
10. Arkhipov A.G. Istoriya gruntotsementnoi plity vtoroi stseny Mariinskogo teatra v Sankt-Peterburge [The history of the grunt-cement slab of the second stage of the Mariinsky Theater in St. Petersburg]. Saint Petersburg: Polytechnica. 2018. 142 p.

For citation: Ovchinnikov N.M., Gladkov I.L., Bartolomey I.L. Methods of ultrasonic quality control of work on jet grouting of soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 48–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-48-52

The Practice of Construction in Particularly Cramped Conditions

Number of journal: 9-2023
Autors:

Sokolov N.S.,
Sokolov S.N.,
Sokolov A.N.

DOI: https://doi.org/10.31659/0044-4472-2023-9-41-47
УДК: 621.6.075

 

AbstractAbout AuthorsReferences
The problems of construction in the cramped conditions of existing industrial enterprises is an important geotechnical task that requires a specific approach from civil engineers, especially from geotechnical specialists. At the same time, the presence of weak engineering and geological elements significantly aggravates the conduct of geotechnical work. Any industrial enterprise is updating its own production, associated with the introduction of new technological lines or additional facilities. The use of bored and bored-injection piles with the joint use of ground anchors arranged using non-standard physical processes in most cases successfully solves many complex and atypical geotechnical problems. The article is an overview.
N.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
S.N. SOKOLOV2, Directoe, LLC “Stroitel Forst”,
A.N. SOKOLOV2, Director for construction (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Chuvash State University named after I.N. Ulyanov (15, Moskovsky prospect, Cheboksary, 428015, Chuvash Republic, Russian Federation)
2 LLC NPF “FORST (109a, Kalinina Street, Cheboksary, 428000, Chuvash Republic, Russian Federation)

1. Ильичев В.А., Мангушев Р.А., Никифорова Н.С. Опыт освоения подземного пространства российских мегаполисов // Основания, фундаменты и механика грунтов. 2012. № 2. С. 17–20.
1. Ilichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of russian megacities underground space. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, pp. 17–20. (In Russian).
2. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Геотехническое сопровождение развития городов. СПб.: Геореконструкция, 2010. 551 с.
2. Ulickij V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical Support of Urban Development]. Saint Petersburg: Georeconstruction, 2010. 551 p.
3. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulgakov L.A. Deformations of the Retaining Structures Upon Deep Excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering, April 3–17. New York, 2004, pp. 5–24.
4. Ilichev V.A., Nikiforova N.S., Koreneva E.B. Computing the evaluation of deformations of the buildings located near deep foundation tranches. Proc. of the XVIth European conf. on soil mechanics and geotechnical engineering. Madrid, Spain, 24–27th September 2007. «Geo-technical Engineering in urban Environments». Vol. 2, pp. 581–585.
5. Ильичев В.А., Никифорова Н.С., Коннов А.В. Прогноз изменения температурного состояния основания здания в условиях потепления климата // Жилищное строительство. 2021. № 6. C. 18–24. DOI: https://doi.org/10.31659/0044-4472-2021-6-18-24
5. Ilyichev V.A., Nikiforova N.S., Konnov A.V. Forecast of changes in the temperature state of the building base in climate warming. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 6, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-6-18-24
6. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7thI nt. Symp. «Geotechnical aspects of underground construction in soft ground», 16–18 May, 2011. tc28 IS Roma, AGI, 2011, № 157NIK.
7. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, 23–25 September 2004, pp. 338–342.
8. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague, 2003.
9. Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Анжело Г.О. Взаимодействие щебеночной сваи с окружающим грунтом и ростверком // Основания, фундаменты и механика грунтов. 2019. № 3. С. 2–6.
9. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Anzhelo G.O. Interaction of a crushed stone pile with the surrounding soil and grillage. Osnovaniya, fundamenty i mekhanika gruntov. 2019. No. 3, pp. 2–6. (In Russian).
10. Pivar J. Stone columns – determination of thesoil improvement factor. Slovak journal of civil engineering. 2011. Vol. XIX. No. 3, pp. 17–21.
11. Соколов Н.С. Технологические приемы устройства буроинъекционных свай с многоместными уширениями // Жилищное строительство. 2016. № 10. С. 54–57.

For citation: Sokolov N.S., Sokolov S.N., Sokolov A.N. The practice of construction in particularly cramped conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 41–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-41-47

Analytical and Numerical Methods for Determining the Stressed State of a Soil Massif in Solving a Plane Problem

Number of journal: 9-2023
Autors:

Polunin V.M.

DOI: https://doi.org/10.31659/0044-4472-2023-9-27-40
УДК: 621.6.072

 

AbstractAbout AuthorsReferences
In the conditions of modern realities, when foreign software settlement systems may be completely inaccessible, there is a need for domestic modern products. It is worth noting the importance of improving the quality of educational and scientific material in matters of numerical methods in relation to engineering and construction specialties. There are a number of fundamental works that outline the basic mathematical principles and implementation of calculations of the stressed deformable state of the soil in various cases. Often, information in the literature may contain typographical errors or be incompletely disclosed, so it is especially important to present the material in detail and with examples to ensure repeatability of the results by readers. In the article describes in detail the method of numerical calculation of the elastic problem of the soil medium using the finite element method. The chosen method makes it possible to take into account the interaction of various physical characteristics of materials. Particular attention is paid to the procedural part, namely the generation of local stiffness matrices and right-hand side vectors, and the peculiarities of their calculation. As a result, a comparison is made of the values of normal and shear stresses based on the results of numerical simulation and rigorous analytical expressions. To compare the results, a ready-made closed source Plaxis software package was chosen, which does not allow to copy it, but allows, according to the selected criteria, to determine the accuracy of the solver created by the FEM author. Verification of the calculation results in Mathcad, obtained by the author, is confirmed by the convergence of the nature of stress isofields, which were also obtained in the Plaxis calculation complex. In the conclusions, the author identified shortcomings and proposed ways to solve them.
V.M. POLUNIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

St. Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russian Federation)

1. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 359 с.
1. Fadeev A.B. Metod konechnyh elementov v geomekhanike. [Finite element method in geomechanics]. Moscow: Nedra. 1987. 359 p.
2. Klaus-Jürgen Bathe Edward L. Wilson. Numerical methods in finite element analysis. Prentice-Hall. 1976. 800 p.
3. Парамонов В.Н. Метод конечных элементов при решении нелинейных задач геотехники. СПб.: ГК «Геореконструкция», 2012. 263 с.
3. Paramonov V.N. Metod konechnyh elementov pri reshenii nelinejnyh zadach geotekhniki. [Finite element method for solving non-linear geotechnical problems]. Saint Petersburg: Georekonstrukciya. 2012. 263 p.
4. He Z., Su B., Yu-long L. Seepage analysis based on weak galerkin finite element method. Yantu Gongcheng Xuebao. Chinese Journal of Geotechnical Engineering. 2022.
5. Галлагер Р. Метод конечных элементов. Основы. М.: Мир, 1984. 428 с.
5. Gallager R. Metod konechnyh elementov. Osnovy. [Finite Element Method. Basics]. Moscow: Mir. 1984. 428 p.
6. Нестеров И.В., Мерзлякова А.Д. Особенности формирования адаптивных сеток МКЭ для решения задач геотехники // Механика композитных материалов и конструкций, сложных и гетерогенных сред: Сборник трудов 11-й Всероссийской научной конференции. М., 2021. С. 356–361.
6. Nesterov I.V., Merzlyakova A.D. Features of the formation of adaptive FEM grids for solving geotechnical problems. Mekhanika kompozitnyh materialov i konstrukcij, slozhnyh i geterogennyh sred. Sbornik trudov 11th Vserossijskoj nauchnoj konferencii. Moscow. 2021, pp. 356–361. (In Russian).
7. Bin W. Phil V., Hicks M., Zhen C. Development of an implicit material point method for geotechnical applications. Computers and Geotechnics. 2016, pp. 159–167.
8. Сахно И.Г. Численное моделирование геомеханических процессов с учетом их нелинейности // Проблемы горного давления. Донецкий национальный технический университет. 2012. № 1. С. 57–67.
8. Sahno I.G. Numerical modeling of geomechanical processes taking into account their nonlinearity. Problemy gornogo davleniya. Doneckij nacional’nyj tekhnicheskij universitet. 2012. No. 1, pp. 57–67. (In Russian).
9. Loseva E., Osokin A., Mironov D., Dyakonov I. Specific features of the construction and quality control of pile foundations in engineering and geological conditions of saint Petersburg. Architecture and Engineering. 2020. № 5 (2), pp. 38–45.
10. Loseva E., Lozovsky I., Zhostkov R., Syasko V. Wavelet analysis for evaluating the length of precast spliced piles using low strain integrity testing. Applied Sciences. 2022. No. 12 (21). DOI: https://doi.org/10.3390/app122110901
11. Schanz T. Aktuelle Entwicklungen bei Standsicherheits- und Verformungsberechnungen in der Geotechnik. Empfehlungen des Arbeitskreises 1.6 «Numerik in der Geotechnik», Abschnitt 4. Geotechnik. 2006. No. 1, pp. 13–28.
12. Lade Р.V. Overview and evalution of constitutive models, Soil Constitutive Models: Evaluation, Selection, and Calibration. Ed. J.A. Yamamuro, V.N. Kaliakin. American Society of Civil Engineers. 2005. Vol. 128, pp. 69–98.
13. Полунин В.М., Лобов И.К., Гурский А.В. Численное моделирование процесса высокочастотного виброизвлечения шпунтовых свай в условиях водо-насыщенных пылевато-песчаных и пылевато-глинистых грунтов // Вестник гражданских инженеров. 2021. № 2 (85). С. 94–101.
13. Polunin V.M., Lobov I.K., Gurskij A.V. Numerical modeling of the process of high-frequency vibroextraction of sheet piles in conditions of water-saturated dusty-sandy and dusty-argillaceous soils. Vestnik grazhdanskih inzhenerov. 2021. No. 2 (85), pp. 94–101. (In Russian).
14. Мангушев Р.А., Пеньков Д.В. Сравнение результатов численных расчетов с использованием современных моделей грунта (hardening soil, hardening soil small и generalized hardening soil) с результатами мониторинга // Вестник гражданских инженеров. 2021. № 2 (85). С. 85–93.
14. Mangushev R.A., Pen’kov D.V. Comparison of the results of numerical calculations using modern soil models (hardening soil, hardening soil small and generalized hardening soil) with monitoring results. Vestnik grazhdanskih inzhenerov. 2021. No. 2 (85), pp. 85–93. (In Russian).
15. Скворцов К.Д., Мангушев Р.А. Учет влияния деформаций шпунтовых ограждений котлованов на дополнительные осадки зданий окружающей застройки // Вестник гражданских инженеров. 2022. № 5 (94). С. 61–68.
15. Skvorcov K.D., Mangushev R.A. Accounting for the influence of deformations of sheet pilings of foundation pits on additional settlements of environmental buildings. Vestnik grazhdanskih inzhenerov. 2022. No. 5 (94), pp. 61–68. (In Russian).
16. Шутова О.А., Пономарев А.Б. Численное моделирование вибрационного воздействия автотранспорта на фундаменты зданий // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2018. Т. 9. № 1. С. 93–102.
16. Shutova O.A., Ponomarev A.B. Numerical modeling of the vibration impact of vehicles on the foundations of buildings. Vestnik Permskogo nacional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arhitektura. 2018. Vol. 9. No. 1, pp. 93–102. (In Russian).
17. Сливец К.В., Колмогорова С.С., Коваленко И.А. Параметры мерзлых грунтов при численном моделировании теплофизических задач // Известия Петербургского университета путей сообщения. 2022. Т. 19. № 2. С. 359–366.
17. Slivec K.V., Kolmogorova S.S., Kovalenko I.A. Parameters of frozen soils in the numerical simulation of thermophysical problems. Izvestiya Peterburgskogo universiteta putej soobshcheniya. 2022. Vol. 19. No. 2, pp. 359–366. (In Russian).
18. Chandrakant S. Desai Musharraf Z. Advanced Geotechnical Engineering. Taylor & Francis Group. 2014. 599 p.
19. Larry J. Segerlind. Applied finite element analysis. Department of Agricultural Engineering. 1976. 393 p.

For citation: Polunin V.M. Analytical and numerical methods for determining the stressed state of a soil massif in solving a plane problem. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 27–40. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-27-40

https://www.traditionrolex.com/11