Личный кабинет

Joint Operation of Large-Span Trusses and Purlins in the Calculation of Progressive Collapse

Number of journal: 11-2023
Autors:

Tusnin A.R.,
Berger M.P.,
Galstyan T.V.

DOI: https://doi.org/10.31659/0044-4472-2023-11-24-31
УДК: 624.012.35

 

AbstractAbout AuthorsReferences
One of the topical areas of modern design is the calculation of the stability of structures to progressive collapse. Large-span steel structures are widely used in both industrial and civil engineering. The study of the problem of resistance of steel frames to progressive collapse will reduce the risk of accidents. The study is devoted to the joint work of steel large-span roof trusses with purlins. As part of the study, a coating with a span of 12 m with trussed girders with a typical arrangement of ties and coating with an additional vertical truss was considered. For each of the options, the stress-strain state of the coating structures was studied in case of local damage to the element of the upper or lower belt of the truss. The possibility of including purlins in the work in case of damage to one of the elements of the truss belt has been studied. Numerical calculations were carried out in a quasi-static formulation, taking into account the nonlinear operation of the coating elements. For each coating variant, the maximum displacements and forces in the elements are determined, and a check was performed for the first group of limit states. Numerical studies have shown that with a typical arrangement of coating ties, the rigidity of the purlins is not enough to effectively redistribute the load from damaged elements to neighboring ones. The forces in the purlins that occur when the truss is damaged significantly exceed the bearing capacity of the purlins. Installing an additional longitudinal vertical truss can significantly reduce the deformation of the coating and more effectively redistribute forces in case of local damage.
A.R. TUSNIN, Doctor of Sciences (Engineering), Professor, Head of the Department of Metal and Wooden Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.P. BERGER, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
T.V. GALSTYAN, postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Vedyakov I.I., Solovyev D.V., Kovalenko A.I. A probabilistic approach to evaluating the risk of progressive collapse. Promyshlennoye i grazhdanskoye stroitel’stvo. 2021. No. 10, pp. 36–43. (In Russian). DOI: 10.33622/0869-7019.2021.10.36-43
2. Tusnina O.A. The choice of emergency situations when calculating the progressive collapse of an industrial building. Promyshlennoye i grazhdanskoye stroitel’stvo. 2021. No. 9, pp. 60–65. (In Russian). DOI: 10.33622/0869-7019.2021.09.60-65
3. Tamrazyan A.G. Conceptual approaches to robustness assessment of building structures, buildings and facilities. Zhelezobetonnye konstruktsii. 2023. No. 3 (3), pp. 62–74. (In Russian). DOI: 10.22227/2949-1622.2023.3.62-74
4. Starossek U., Haberland M. Approaches to measures of structural robustness. Structure and Infrastructure Engineering. 2011. Vol. 7 (7–8), pp. 625–631. DOI: 10.1080/15732479.2010.501562
5. Buitrago M., Bertolesi E., Calderón P.A., Adam J.M. Robustness of steel truss bridges: Laboratory testing of a full-scale 21-metre bridge span. Structures. 2021. Vol. 29, pp. 691–700. DOI: 10.1016/j.istruc.2020.12.005
6. Lyu C.H., Gilbert B.P., Guan H., Underhill I.D., Gunalan S., Karampour H. Experimental study on the quasi-static progressive collapse response of post-and-beam mass timber buildings under corner column removal scenarios. Engineering Structures. 2021. Vol. 242. 112947. DOI: 10.1016/j.engstruct.2021.112497
7. Fedorov V.S., Mednov E.A. The influence of the initial stress-strain state and the loading level on the dynamic effect occurring in the case of emergency destruction of a support in continuous steel beams. Stroitel’stvo i rekonstruktsiya. 2010. No. 6, pp. 48–52. (In Russian).
8. Qiao-Ling Fu, Liang Tan, Bin Long and Shao-Bo Kang Numerical investigations of progressive collapse behavior of multi-storey reinforced concrete frames. Buildings. 2023. Vol. 13 (2). 533. DOI: 10.3390/buildings13020533
9. Wang S., Cheng X., Li Y., Song X., Guo R., Zhang H., Liang Z. Rapid visual simulation of the progressive collapse of regular reinforced concrete frame structures based on machine learning and physics engine. Engineering Structures. Vol. 286. 116129. DOI: 10.1016/j.engstruct.2023.116129
10. Qiao H., Xie X., Chen Y. Improvement of progressive collapse resistance for a steel frame system with beam-web opening. Engineering structures. Vol. 256. 113995. DOI: 10.1016/j.engstruct.2022.113995
11. Szyniszewski S., Krauthammer T. Energy flow in progressive collapse of steel framed buildings. Engineering Structures. 2012. Vol. 42, pp. 142–153. DOI: 10.1016/j.engstruct.2012.04.014
12. Klueva N.V., Fedorov V.S. To the analysis of survivability of suddenly damaged frame systems. Stroitel’naya mekhanika i raschet sooruzhenii. 2006. No. 3 (205), pp. 7–13.
13. Buhtiyarova A.S., Kolchunov V.I., Prasolov N.O. Calculation of the generalized parameter of survivability of a reinforced concrete frame-rod structural system in the event of a sudden loss of stability of a bearing element. Stroitelstvo i reconstructcia. 2013. No. 6 (50), pp. 9–12. (In Russian).
14. Shoghijavan M., Starossek U. Developing a robustness index for parallel load-bearing systems. Engineering Structures. 2021. Vol. 244. 112742. DOI: 10.1016/j.engstruct.2021.112742
15. Tanvir Manzur, Mohammad Hasan Mahmood, Bayezid Baten, Md. Jidan Hasan, Md. Raquibul Hossain, Munaz Ahmed Noor and Nur Yazdani. Assessment of progressive collapse proneness of existing typical garment factory buildings in Bangladesh. Journal of Performance of Constructed Facilities. 2020. Vol. 34 (5).
16. Kolchunov V.I., Moskovtseva V.S. Survivability of reinforced concrete frames of multi-storey buildings with complex stress elements. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2022. No. 18 (3), pp. 195–203. (In Russian). DOI: 10.22363/1815-5235-2022-18-3-195-203
17. Alekseytsev A.V., Kurchenko N.S. Review of methodsand results of experimental investigations of steel and steel concrete structures under special impact. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2018. No. 14 (3), pp. 205–215. (In Russian). DOI: 10.22363/1815-5235-2018-14-3-205-215
18. Serpik I.N., Alekseytsev A.V. Experimental study of the bearing capacity of spatial metal frames. Vestnik MGSU. 2012. No. 5, pp. 40–44. (In Russian).
19. Arutyunyan G.A. Protection of pavement blocks of industrial buildings with damaged load-bearing structures from progressive collapse. Vestnik MGSU. 2015. No. 9, pp. 16–27. (In Russian).
20. Yeremin K.I., Matveyushkin S.A., Arutyunyan G.A. Methodology for experimental studies of coating blocks of industrial buildings under emergency impacts. Vestnik MGSU. 2015. No. 12, pp. 34–46. (In Russian).
21. Tusnin A.R., Berger M.P. Dynamic coefficients for quasi-static analysis of large-span trusses with local failures. Promyshlennoye i grazhdanskoye stroitel’stvo. 2023, No. 5, pp. 17–24. (In Russian). DOI: 10.33622/0869-7019.2023.05.17-24

For citation: Tusnin A.R., Berger M.P., Galstyan T.V. Joint operation of large-span trusses and purlins in the calculation of progressive collapse. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 24–31. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-24-31

Construction 4.0

Number of journal: 11-2023
Autors:

Adamtsevich L.A.
Ginzburg E.A.,
Shilov L.A.

DOI: https://doi.org/10.31659/0044-4472-2023-11-18-23
УДК: 624

 

AbstractAbout AuthorsReferences
The article is devoted to the analysis of technologies of the “Construction 4.0” concept in Russia. Since the term «Construction 4.0» has not yet found widespread use in the domestic literature, at the initial stage of the study foreign articles were analyzed to obtain initial knowledge about the concept under consideration and identify key words used in the scientific literature. As a result, a sample of 15 key words was formed. At the next stage, data on the dynamics of changes in the number of publications in the RSCI for previously defined key words over the past 5 years is collected. The year 2023 is considered separately, since the sample for this year is incomplete. As a result, it was determined that three areas are most in demand in domestic publications: information modeling technologies, new building materials and Big Data. Based on the results of consideration of research on information modeling technologies, it is worth noting that a promising direction is related to forecasting the volume of construction and demolition of capital construction objects to estimate the volume of demolition and construction waste, which can become a scientifically based basis for the formation of programs for the development of processing facilities and disposal sites waste, etc. In addition, information models are the main sources of big data in construction, but on the path of active development of big data technology in the construction industry, several problems need to be solved. In terms of the development of new building materials, a significant number of studies are devoted to the development of new properties of concrete.
L.A. ADAMTSEVICH, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. GINZBURG, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
L.A. SHILOV, Degree Applicant (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Гинзбург А.В., Адамцевич Л.А., Адамцевич А.О. Строительная отрасль и концепция «Индустрия 4.0» // Вестник МГСУ. 2021. Т. 16. № 7. С. 885–911.
1. Ginzburg A.V., Adamtsevich L.A., Adamtsevich  A.O. Construction industry and Industry 4.0: review. Vestnik MGSU. 2021. Vol. 16. No. 7, pp. 885–911. (In Russian).
2. Heijden J. Construction 4.0 in a narrow and broad sense: A systematic and comprehensive literature review. Building and Environment. 2023. Vol. 244, 110788. https://doi.org/10.1016/j.buildenv.2023.110788
3. Roland Berger G.M.B.H. Digitization In the Construction Industry: Building Europe’s Road To “Construction 4.0”, Roland Berger GMBH. Munich. 2016.
4. Sawhney A., Riley M., Irizarry J. Construction 4.0: an Innovation Platform for the Built Environment. Routledge. Abingdon. 2020.
5. Schranz C., Urban H., Gerger A., Potentials of augmented reality in a BIM based building submission process. Journal Informational Technology and Construction. 2021. 26 (1), pp. 441–457. DOI: 10.36680/j.itcon.2021.024
6. Charef R., Alaka H., Emmitt S., Beyond the third dimension of BIM: a systematic review of literature and assessment of professional views. Journal of Building Engineering. 2018. No. 19, pp. 242–257. https://doi.org/10.1016/j.jobe.2018.04.028
7. Филатов В.В., Пестрикова А.Д., Адамцевич Л.А. Отечественный опыт развития технологий информационного моделирования // Промышленное и гражданское строительство. 2023. № 9. С. 80–87.
7. Filatov V.V., Pestrikova A.D. Adamtsevich L.A. Domestic experience in the development of information analysis technologies. Promyshlennoye i grazhdanskoe stroitel’stvo. 2023. No. 9, pp. 80–87. (In Russian).
8. Жаров Я.В., Семёнов С.А. Принципы формирования компетенций применения технологий информационного моделирования в строительстве // Жилищное строительство. 2023. № 8. С. 21–27. DOI: https://doi.org/10.31659/0044-4472-2023-8-21-27.
8. Zharov Ya.V., Semenov S.F. The concept of the formation of competencies for the use of information modeling technologies in construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 8, pp. 21–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-8-21-27
9. Mantha B., García de Soto B., Karri R. Cyber security threat modeling in the AEC industry: an example for the commissioning of the built environment. Sustainbility of cities. 2021. No. 66 (102682), pp. 1–15. https://doi.org/10.1016/j.scs.2020.102682
10. Чернышов Е.М. Природные силикаты магния – новое эффективное сырье для промышленности строительных материалов // Строительные материалы. 1988. № 10. С. 16–18.
10. Chernyshov E.M. Natural magnesium silicates are a new effective raw material for the building materials industry. Stroitel’nye Materialy [Construction Materials]. 1988. No. 10, pp.16–18. (In Russian).
11. Баранов И.М. Новые эффективные строительные материалы для создания конкурентных производств // Строительные материалы. 2001. № 2. С. 26–28.
11. Baranov I.M. New efficient building materials for creating competitive industries. Stroitel’nye Materialy [Construction Materials]. 2001. No. 2, pp. 26–28. (In Russian).
12. Коников А.И. Перспективные направления в области информационных систем управления строительством // Промышленное и гражданское строительство. 2019. № 6. С. 64–69.
12. Konikov A.I. Promising directions in the field of construction management information systems. Promyshlennoye i grazhdanskoe stroitel’stvo. 2019. No. 6, pp. 64–69. (In Russian).

For citation: Adamtsevich L.A. Ginzburg E.A., Shilov L.A. Construction 4.0. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-18-23

The Concept of Development of Additive Technologies in Individual Housing Construction

Number of journal: 11-2023
Autors:

Maltseva E.V.,
Dmitriev A.V.

DOI: https://doi.org/10.31659/0044-4472-2023-11-12-17
УДК: 332/822

 

AbstractAbout AuthorsReferences
The article is an overview of the principles, traditions and history of construction and architecture of an individual residential building, as well as 3D construction printing technology with a variety of approaches and purposes for using this technology in the field of architecture (conceptual design and practical application). The purpose of the research and analysis is to create a unique architectural solution for an individual residential building project for its implementation in the West Siberian region, adapted for additive technologies, taking into account regional features.
E.V. MALTSEVA, Junior Researcher at the Laboratory of Additive Technologies in Construction (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. DMITRIEV, Candidate of Sciences (Engineering), Junior Researcher at the Laboratory of Additive Technologies in Construction

Tyumen Industrial University (38, Volodarskogo Street, Tyumen, 625000, Russian Federation)

1. Cesaretti G., Dini E., Kestelier X., Colla V., Pambaguian L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronautica. 2014. Vol. 93, pp. 430–450. https://doi.org/10.1016/j.actaastro.2013.07.034
2. Kamram M., Hussein A.B. 3D Printing Concrete Technology and Mechanics from Industrial Aspect. Energy Policy. 2020. No. 3, pp. 2–12.
3. Khan M., Sanchez F., Zhou H. 3-D printing of concrete: Beyond horizons. Cement and Concrete Research. 2020. Vol. 133. https://doi.org/10.1016/j.cemconres.2020.106070
4. Грахов В.П., Мохначев С.А., Бороздов О.В. Влияние развития 3D-технологий на экономику строительства // Фундаментальные исследования. 2014. № 11 (ч. 12). С. 2673–2676.
4. Grakhov V.P., Mokhnachev S.A., Borozdov O.V.The impact of the development of 3D technologies on the construction economy. Fundamental Research. 2014. No. 11 (chast’ 12), pp. 2673–2676. (In Russian).
5. Суслов В.В. Жемчужины русского зодчества по преданиям старины. M.: Центральное Издательство, 2021. 56 с.
5. Suslov V.V. Zhemchuzhiny russkogo zodchestva po predaniyam stariny [Pearls of Russian architecture according to ancient legends]. Moscow: Tsentral’noe Izdatel’stvo. 2021. 56 p.
6. Малинин Н. Современный русский деревянный дом. М.: Музей современного искусства «Гараж», 2020. 348 с.
6. Malinin N. Sovremennyi russkii derevyannyi dom [Modern Russian wooden house]. Moscow: Muzei sovremennogo iskusstva «Garazh». 2020. 348 p.
7. Краснова Т.В., Пермяков М.Б. Творческие подходы в формировании имиджа городской среды средствами архитектуры и дизайна // Современные наукоемкие технологии. 2019. № 2. С. 89–93.
7. Krasnova T.V., Permyakov M.B. Creative approaches in shaping the image of the urban environment by means of architecture and design. Sovremennye naukoemkie tekhnologii. 2019. No. 2, pp. 89–93. (In Russian).
8. Пермяков М.Б., Краснова Т.В., Дорофеев А.В. Аддитивные технологии в строительстве и дизайне архитектурной среды: настоящее и будущее. Актуальные проблемы современной науки, техники и образования. 2018. T. 9. № 2. С. 2–5.
8. Permyakov M.B., Krasnova T.V., Dorofeev A.V. Additive technologies in construction and architectural environment design: present and future. Actualynye problemy sovremennoy nauki, techniki i obrazovaniya. 2018. Vol. 9. No. 2, pp. 2–5. (In Russian).
9. Касьянов Н.В. К проблеме эволюции пространственных форм архитектуры в контексте научно-технологических достижений // Academia. Архитектура и строительство. 2019. № 3. С. 34–43.
9. Kas’yanov N.V. On the problem of the evolution of spatial forms of architecture in the context of scientific and technological achievements. Academia. Architectura i stroitelstvo. 2019. No. 3, pp. 34–43. (In Russian).
10. Culture: urban future; global report on culture for sustainable urban development. Paris: UNESCO, 2016. 303 p.
11. Панова Н.Г., Жиркова В.Д. Особенности формирования цветовой среды северных городов России // Архитектура и современные информационные технологии. 2021. № 3 (56). DOI: 10.24412/1998-4839-2021-3-334-344
11. Panova N.G., Zhirkova V.D. Features of the formation of the color environment of the northern cities of Russia. Architecture and Modern Information Technologies. 2021. No. 3 (56). (In Russian). DOI: 10.24412/1998-4839-2021-3-334-344
12. Разов И.О., Соколов В.Г., Дмитриев А.В., Еренчинов С.А. Предложение по устройству перекрытия при возведении зданий с помощью аддитивных технологий // Строительные материалы. 2023. № 10. С. 116–120. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-116-120
12. Razov I.O., Sokolov V.G., Dmitriev A.V., Erenchinov S.A. Proposal for the installation of the overlap during the construction of buildings using additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 116–120. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-818-10-116-120
13. Славчева Г.С. Анализ российской нормативной документации, регламентирующей применение и развитие строительных аддитивных технологий // Строительные материалы. 2023. № 8. С. 10–17. DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17
13. Slavcheva G.S. Analysis of the Russian regulatory documentation regulating the use and development of construction additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 8, pp. 10–17. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-816-8-10-17
14. Бекмансуров М.Р., Яковлев Г.И., Гордина А.Ф., Кузьмина Н.В., Саидова З.С., Александров А.М., Жуков А.Н. Быстротвердеющий состав на основе фторангидрита для послойной экструзии (3D-печати) // Строительные материалы. 2023. № 6. С. 65–69. DOI: https://doi.org/10.31659/0585-430X-2023-814-6-65-69
14. Bekmansurov M.R., Yakovlev G.I., Gordina A.F., Kuzmina N.V., Saidova Z.S., Alexandrov A.M., Zhukov A.N. Fast curing fluoroanhydrite composition for layer-by-layer extrusion (3D printing). Stroitel’nye Materialy [Construction Materials]. 2023. No. 6, pp. 65–69. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-814-6-65-69
15. Монастырев П.В., Езерский В.А., Иванов И.А., Азауи Дубла Б. Аддитивные технологии возведения стен малоэтажных зданий и их классификация. Фундаментальные, поисковые и прикладные исследования Российской академии архитектурных и строительных наук по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2018 году. М.: РААСН, 2018. Т. 2. С. 368–379.
15. Мonastyrev P.V., Ezerskii V.A., Ivanov I.A., Azaui Dubla B. Additive technologies for the construction of walls of low-rise buildings and their classification. Fundamental, exploratory and applied research of the Russian Academy of Architectural and Construction Sciences on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2018. Moscow. RAASN. 2018. Vol. 2, pp. 368–379.

For citation: Maltseva E.V., Dmitriev A.V. The concept of development of additive technologies in individual housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 12–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-12-17

International Research Experience in the Field of Additive Construction Manufacturing

Number of journal: 11-2023
Autors:

Pustovgar A.P.,
Adamtsevich L.A.,
Adamtsevich A.O.

DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10
УДК: 624

 

AbstractAbout AuthorsReferences
An analysis of domestic and foreign research was carried out in order to identify promising areas for further research in the field of development of additive technologies in construction. The basis for the study was data from the national bibliographic database (DB) of scientific citation - RSCI, as well as the international database Scopus for the period from 2015 to 2023. Publications before 2015 are characterized as single declarative ones and do not contain applied developments. Key words used in the samples were searched for in publication titles, abstracts, key words in journal articles, books, conference proceedings, dissertations, reports, deposited manuscripts, patents, and grants. An analysis of foreign publications has shown that the main differences in construction 3D printing technology are associated with the material used as “ink” for the 3D printer and the very design of the extruder with which this material is applied to the substrate. Publications can be divided into studies on the characteristics of the mixture used in 3D printing; research of technologies and equipment; assessment of construction sustainability when introducing additive construction production. Additive technologies provide the opportunity to create unique, complex and customized architectural solutions that would not be possible with traditional construction methods. The durability of structures and products produced using additive technology remains poorly understood; reliability and safety of structures erected by layer-by-layer extrusion under the influence of dynamic, including seismic, loads; waterproofness and breathability of structures built using additive construction technology, etc.
A.P. PUSTOVGAR1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
L.A. ADAMTSEVICH1, Сandidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.O. ADAMTSEVICH1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Mechanical Engineering Research Institute named after A.A. Blagonravov of the Russian Academy of Sciences (4, M. Kharitonyevskiy Pereulok, 101990 Moscow, Russian Federation)

1. Адамцевич А.О., Пустовгар А.П. Аддитивное строительное производство: исследование эффекта анизотропии прочностных характеристик бетона // Строительные материалы. 2022. № 9. С. 18–24. DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
1. Adamtsevich A.O., Pustovgar A.P. Additive construction production: study of the effect of anisotropy of the strength characteristics of concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-806-9-18-24
2. Мухаметрахимов Р.Х. Исследование пластифицирующих добавок на основе эфиров поликарбоксилатов на свойства бетонов, формуемых методом 3D-печати // Строительные материалы и изделия. 2022. Т. 5. № 5. С. 42–58.
2. Mukhametrakhimov R.Kh. Study of plasticizing additives based on polycarboxylate esters on the properties of concrete molded by 3D printing. Stroitel’nye materialy i isdeliya. 2022. Vol. 5. No. 5, pp. 42–58. (In Russian).
3. Зиганшина Л.В. Мелкозернистые бетоны в технологии аддитивного производства (3D-печати): Дис. ... канд. техн. наук. Казань, 2022. 282 с.
3. Ziganshina L.V. Fine-grained concrete in additive manufacturing technology (3D printing). Cand. Diss. (Engineering) Kazan. 2022. 282 p. (In Russian).
4. Патент РФ 2794037. C1 Способ 3D-печати бетоном с длительным технологическим перерывом. Мухаметрахимов Р.Х., Зиганшина Л.В. Заявл. 01.11.2022. Опубл. 11.04.2023.
4. Patent RF 2794037 C1. Sposob 3D-pechati betonom s dlitel’nym tekhnologicheskim pereryvom [A method for 3D printing concrete with a long technological break]. Mukhametrakhimov R.Kh., Ziganshina L.V. Declared 01.11.2022. Published 11.04.2023. (In Russian).
5. Патент РФ 2795632 C1. Способ 3D-печати. Мухаметрахимов Р.Х. Заявл. 01.11.2022. Опубл. 05.05.2023.
5. Patent RF 2795632 C1. Sposob 3D-pechati. [A method for 3D printing]. Mukhametrakhimov R.Kh. Declared 01.11.2022. Published 05.05.2023. (In Russian).
6. Rahul A.V., Meena H., Chani Z. 3D printable concrete: Mixture design and test methods. Cement and Concrete Composites. 2019. No. 97, pp. 13–23. https://doi.org/10.1016/j.cemconcomp.2018.12.014
7. Pham L., Tran P., Sanjayan J. Steel fibres reinforced 3D printed concrete: Influence of fibre sizes on mechanical performance. Construction and Building Materials. 2020. No. 250. https://doi.org/10.1016/j.conbuildmat.2020.118785
8. Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials. 2020. No. 257, 119546. https://doi.org/10.1016/j.conbuildmat.2020.119546
9. Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete. Construction and Building Materials. 2019. No. 201, pp. 278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
10. Tay Y.W.D., Ting G. H. A., Qian Y., Panda B., He L., Tan M. J. Time gap effect on bond strength of 3D-printed concrete. Virtual and Physical Prototyping. 2019. No.14, pp.104-113.
11. Rahul A.V., Santhanam M., Meena H., Chani Z. Mechanical characterization of 3D printable concrete. Construction and Building Materials. 2019. No. 227, 116710. https://doi.org/10.1016/j.conbuildmat.2019.116710
12. Panda B., Mohamed N.A.N., Paul S.C., Singh G.B., Tan M.J., Savija B. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete. Materials. 2019. No. 12 (13), 2149. https://doi.org/10.3390/ma12132149
13. Labonette N., Ronnquist A., Manum B. Ruther P. Additive construction: state-of-the-art, challenges and opportunities. Automation in Construction. 2016. No. 72 (3), pp. 347–366. https://doi.org/10.1016/j.autcon.2016.08.026
14. Khan S.A., Koc M., Al-Ghamdi S.G. Sustainability assessment, potentials and challenges of 3D printed concrete structures: A systematic review for built environmental applications. Journal of Cleaner Production. 2021. No. 303, 127027. https://doi.org/10.1016/j.jclepro.2021.127027
15. Han Y., Yang Z., Ding T., Xiao J. Environmental and economic assessment on 3D printed buildings with recycled concrete. Journal of Cleaner Production. 2021. No. 278, 123884. https://doi.org/10.1016/j.jclepro.2020.123884
16. Mohammad, M., Masad E., Al-Ghamdi S. 3d concrete printing sustainability: A comparative life cycle assessment of four construction method scenarios. Buildings. 2020. 10 (12). 245. https://doi.org/10.3390/buildings10120245

For citation: Pustovgar A.P., Adamtsevich L.A., Adamtsevich A.O. International research experience in the field of additive construction manufacturing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 11, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-11-4-10

Monitoring of Single-Post Free-Standing Supports of Overhead Power Lines under the Action of Wind Loads

Number of journal: 12-2023
Autors:

Tanasoglo A.V.,
Garanzha I.M.,
Fedorova S.R.

DOI: https://doi.org/10.31659/0044-4472-2023-12-73-78
УДК: 621.315.1

 

AbstractAbout AuthorsReferences
Experimental studies of the dynamic behavior of metal supports of an overhead line (OL) under the action of wind loads are presented. The methodology and scheme of the experiment execution in two stages on the anchor-angular and intermediate supports of the 220 kV overhead line “Zmiev TPP – Zalyutino” have been developed. At the first stage, the excitation of vibrations of the support structures was achieved using wind action, at the second stage, free vibrations of the “support – wires” system were recorded, which were created using manual resonance. Graphs of stress changes in structural elements of tower lattice supports in the wind along and across the overhead line are presented. The main natural frequencies of vibrations of metal supports have been experimentally determined, which are displayed on the free vibration damping graphs. Analysis of the obtained spectra of longitudinal pulsations of wind speed made it possible to conclude that the wind flow is stationary. The necessity of frequency detuning of the overhead line support structure from the natural frequency of 2.2 Hz has been established, since an external effect with this frequency is possible when the live wire breaks in one of the phases. It is necessary to improve not only the principles of monitoring and observing the behavior of structures in the wind flow, but also to develop simple methods to take into account the dynamic component under the action of natural-climatic and emergency loads, which by their nature are dynamic phenomena.
A.V. TANASOGLO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.M. GARANZHA, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.R. FEDOROVA, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Трофимов В.И. Исследование устойчивости и несущей способности металлических конструкций опор линий электропередачи. М.: АСВ, 2019. 320 с.
1. Trofimov V.I. Issledovanie ustojchivosti i nesushhej sposobnosti metallicheskikh konstrukcij opor linij elektroperedachi [Study of the stability and load-bearing capacity of metal structures such as power transmission towers]. Moscow: ASV. 2019. 320 p.
2. Шевченко Е.В. Совершенствование металлических конструкций опор воздушных линий электропередачи. Макеевка: ДонНАСА, 2017. 123 с.
2. Shevchenko E.V. Sovershenstvovanie metallicheskix konstrukcij opor vozdushnykh linij elektroperedachi [Improving metal structures of overhead power transmission line supports]. Makeevka: DonNASA. 2017. 123 p.
3. Васылев В.Н. Исследование пространственной работы крестовой решетки при натурных испытаниях опоры ВЛ на Полигоне ДонНАСА // Металлические конструкции. 2018. Т. 19. № 1. С. 15–25.
3. Vasy`lev V.N. Issledovanie prostranstvennoj raboty krestovoj reshetki pri naturnykh ispytaniyakh opor VL na Poligone DonNASA. Metallicheskie konstrukcii. 2018. Vol. 19. No. 1, pp. 15–25. (In Russian).
4. Крюков К.П. Конструкции и механический расчет линий электропередачи. М.: Энергия, 2020. 312 с.
4. Kryukov K.P. Konstrukcii i mekhanicheskij raschyot linij ehlektroperedachi [Structures and mechanical analysis of power lines] Moscow: Energiya. 2020. 312 p.
5. Yang B., Dzikowich B. Stress, strain, and structural dynamics: an interactive handbook of formulas, solutions, and MATLAB toolboxes. The Journal of the Acoustical Society of America. 2005. V. 118 (6), pp. 3376–3387. DOI: https://doi.org/ 10.1121/1.2118987
6. Coşkun S.B. Advances in computational stability analysis. Rijeka: InTech. 2020. 132 p.
7. Bazant Z.P. Stability of structures: elastic, inelastic, fracture, and damage theories. New York: Oxford University Press. 2020. 1011 p.
8. Couneson P., Lamsoul J., Delplanque D. Improving the performance of existing high-voltage overhead lines by using compact phase and ground conductors. CIGRE. Vol. 12 (3). 2019, pp. 18–76.
9. Танасогло А.В. Уточнение коэффициента динамичности анкерно-угловой опоры ВЛ 110 кВ при действии пульсационной составляющей ветровой нагрузки // Металлические конструкции. 2019. Т. 34. № 2. С. 135–145.
9. Tanasoglo A.V. Utochnenie koehfficienta dinamichnosti ankerno-uglovoj opory VL 110 KV pri dejstvii pul’sacionnoj sostavlyayushchej vetrovoj nagruzki. Metallicheskie konstrukcii. 2019. Vol. 34. No. 2, pp. 135–145.
10. Diana G., Bruni S., Cheli F., Fosatti F., Manetti A. Dynamic analysis of the transmission line crossing «Lago de Maracaibo». Structures of Overhead Lines Journal. 2007, pp. 1759–1766.
11. Kemp A.R., Behneke R.H. Behaviour of cross-bracing in latticed towers. Journal of Structural Engineering. 2018. Vol. 124 (4). 2018, pp. 360–367. DOI: https://doi.org/13.1061/(ASCE)0733-9445(2018)124:4(360)
12. Box M.J., Davis D., Swann W.H. Nonlinear optimization techniques. Edinburgh: Oliver and Boyd. 2018. 60 p.
13. Li H., Bai H. High-voltage transmission tower-line system subjected to disaster loads. Progress in Natural Science. 2016. Vol. 16 (9), pp. 899–911. DOI: https://doi.org/10.1080/10020070612330087
14. Togbenou K., Li Y., Chen N., Liao H. An efficient simulation method for vertically distributed stochastic wind velocity field based on approximate piecewise wind spectrum. Journal of Wind Engineering and Industrial Aerodynamics. 2016. Vol. 151 (3), pp. 48–59. DOI: https://doi.org/10.1155/2010/749578

For citation: Tanasoglo A.V., Garanzha I.M., Fedorova S.R. Monitoring of single-post free-standing supports of overhead power lines under the action of wind loads. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 73–78. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-73-78

Experimental Study of Longitudinal and Transverse Bending of Pipe Concrete Rods

Number of journal: 12-2023
Autors:

Khazov P.A.,
Pomazov A.P.

DOI: https://doi.org/10.31659/0044-4472-2023-12-66-71
УДК: 624.012.44

 

AbstractAbout AuthorsReferences
The results of experimental studies of pipe-concrete rods during longitudinal and transverse bending tests, since these stress-strain states are of interest from the point of view of the operation of building structures, are presented. To carry out the experiments, several series of laboratory samples 700 mm long were made, which were steel pipes with a monolithic core made of fine-grained concrete. Diagrams of test installations are presented and methods for conducting experiments on axial compression with subsequent loss of stability and three-point bending with concentrated lateral load are described. Based on experimental data, deformation diagrams are constructed and compared with the deformation of a hollow steel pipe. It is noted that the presence of a concrete rod prevents premature loss of stability of the pipe wall during longitudinal bending, limits local deformations due to the curvature of sections during transverse bending, increases the elastic region of deformations, and also prevents the brittle nature of destruction, which is an important advantage in the design of buildings.
P.A. KHAZOV, Candidate of Sciences (Engineering) Associate Professor, Head of the Laboratory of Continuous Monitoring of the Technical Condition of Buildings and Structures (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. POMAZOV, Engineer, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Nizhny Novgorod State University of Architecture and Civil Engineering (65, Il’inskaya St., Nizhny Novgorod, 603950, Russian Federation)

1. Akaev A.I., Magomedov M.G., Pajzulaev М.М. Prospects for the construction of earthquake-resistant buildings made of concrete filled steel tubes. Vestnik of the Dagestan State Technical University. Technical science. 2017. Vol. 44. No. 1, pp. 138–149. (In Russian). DOI: 10.21822/2073-6185-2017-44-1-138-149
2. Morino S., Tsuba K. Design and construction of concrete-filled steel tube column system in Japan. Earthquake and Engineering Seismology. 2005. No. 1. Vol. 4, pp. 51–73.
3. Ovchinnikov I.I., Ovchinnikov I.G., Chesnokov G.V., Mihaldykin E.S. On the problem of calculating pipe-concrete structures with a shell made of different materials. Part 1. Experience in the use of pipe concrete with a metal shell. Internet-zhurnal Naukovedenie. 2015. Vol. 7. No. 4 (29). URL: https://naukovedenie.ru/PDF/95TVN415.pdf (Date of access 12.09.2023). (In Russian).
4. Krishan A.L. Concrete filled steel tubes for multi-storey buildings. Stroitel’naya mekhanika inzhenernyh konstrukcij i sooruzhenij. 2009. No. 4, pp. 75–80. (In Russian).
5. Krishan A.L., Surovcev M.M. Experimental studies of the strength of flexible concrete filled steel tubes. Vestnik of the Magnitogorsk State Technical University named after G.I. Nosov. 2013. No. 1 (41), pp. 90–92. (In Russian).
6. Lu Y., Na Li, Li S., Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials. 2015. No. 95, pp. 74–85. DOI: 10.1016/j.conbuildmat.2015.07.114
7. Lazovic Radovanovic M.M., Nikolic J.Z., Radovanovic J.R., Kostic S.M. Structural behaviour of axially loaded concrete-filled steel tube columns during the top-down construction method. Applied Sciences. 2022. No. 12 (8), 3771. DOI: https://doi.org/10.3390/app12083771
8. Manikandan K.B., Umarani C. Understandings on the performance of concrete-filled steel tube with different kinds of concrete infill. Advances in Civil Engineering. 2021. Vol. 2021. Article ID 6645757. 12 p. DOI: https://doi.org/10.1155/2021/6645757
9. Jielian Zheng, Jianjun Wang. Concrete-filled steel tube arch bridges in China. ELSEVIER Engineering. 2018. No. 4, pp. 143–155. https://doi.org/10.1016/j.eng.2017.12.003
10. Tamrazyan A.G., Manaenkov I.K. Testing of small diameter concrete filled steel tube samples with high reinforcement coefficient. Stroitel’stvo i rekonstrukciya. 2017. No. 4 (72), pp. 57–62. (In Russian).
11. Khazov P.A., Erofeev V.I., Lobov D.M., Sitnikova A.K., Pomazov A.P. The experimental research of the strength of composite steel tube confined concrete samples of small-sized sections. Privolzhskiy nauchnyy zhurnal. 2022. No. 3 (63), pp. 36–43. (In Russian).
12. Khazov P.A., Pomazov A.P. Strength and longitudinal bending of pipe concrete rods under central compression. Stroitel’naya mekhanika i konstrukcii. 2023. No. 2 (37), pp. 77–86. (In Russian).
13. Erofeev V.I., Khazov P.A., Sitnikova A.K. Strength and stability of composite reinforced concrete and pipe concrete samples under static loading. Vestnik of the Tomsk State National University of Architecture and Civil Engineering. 2023. No. 25 (2), pp. 141–153. (In Russian).
14. Khazov P.A. Triaxial stress state of concrete under longitudinal deformation of tube-concrete samples. Problemy prochnosti i plastichnosti. 2023. Vol. 85. No. 2, pp. 5–15. (In Russian).

For citation: Khazov P.A., Pomazov A.P. Experimental study of longitudinal and transverse bending of pipe concrete rods. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 66–71. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-66-71

Experimental Studies of Compressed-Bendable Elements of Composite Cross-Section on Screwed-in Rods

Number of journal: 12-2023
Autors:

Klyukin A.A.

DOI: https://doi.org/10.31659/0044-4472-2023-12-58-65
УДК: 624.011.17

 

AbstractAbout AuthorsReferences
An analysis of scientific works of domestic scientists in the field of the use of metal rods in wooden structures was carried out. The results of experimental and theoretical studies of a prefabricated structural element made of solid wood – beams with a cross-section of 150150 mm connected by screws in height to a rod of rectilinear or broken section with a height of 450 mm are presented. These beams can then be enlarged and used as edges of flat or spatial structures for covering buildings for various purposes. The structures do not require high technologies for processing materials and gluing; they can be manufactured even under construction conditions, which is advisable for construction in areas of development, for example, in the Far North. Methods for testing composite structures on inclined screwed-in rods under short-term loads are described. The features of their structure and behavior under static loads in limit states are studied. The nature of the destruction of samples is described. Weaknesses of the designed structure have been identified. The hypothesis about the possibility of using the proposed structures both for temporary buildings and for the construction of capital buildings is confirmed. Conclusions are drawn on the further study of this type of structures.
A.A. KLYUKIN, Senior lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Linkov V.I. Constructions based on composite wooden elements with connections on inclined metal rods without the use of glue. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 11, pp. 29–31. (In Russian).
2. Linkov V.I. Evaluation of the long-term strength of the joints of wooden elements on inclined metal rods without the use of glue. Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 3, pp. 25–28. (In Russian).
3. Linkov V.I. Modeling of the work of composite wooden beams on malleable bonds using the theory of composite rods A.R. Rzhanitsyn. Stroitel’naya mekhanika i raschet sooruzhenii. 2011. No. 5, pp. 30–35. (In Russian).
4. Linkov V.I. Bearing capacity and deformability of joints on inclined rods with combined washers. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 9, pp. 40–43. (In Russian).
5. Turkovsky S.B., Pogoreltsev A.A., Preobrazhenskaya I.P. Kleenye derevyannye konstruktsii s uzlami na vkleennykh sterzhnyakh v sovremennom stroitel’stve (sistema TsNIISK) [Glued wooden structures with nodes on glued rods in modern construction (­TSNIISK system)]. Moscow: RIF “Stroymaterialy”. 2013. 308 p.
6. Anatoly Naichuk, Alexander Pogoreltsev, Igor Demchuk, Andrey Ivanyuk, Svetlana Roshchina. Rigid connection of structures made of bent glued beams using inclined glued rods. Proceedings of MPCPE. Lecture Notes in Civil Engineering. 2021. Vol. 182. https://doi.org/10.1007/978-3-030-85236-8_45
7. Alexander Pogoreltsev, Stanislav Turkovsky, Vladimir Stoyanov. Rigid joints on glued-in rods of bending and compression bending elements of large-span laminated timber structures. World Conference on Timber Engineering. Oslo. 2023, pp. 4201–4208.
8. Naichuk A.Ya., Babaev M.V. On the issue of assessing the bearing capacity of steel screw rods screwed at an angle to wood fibers. Promyshlennoe i grazhdanskoe stroitel’stvo. 2010. No. 1, pp. 21–23. (In Russian).
9. Zhadanov V.I., Arkaev M.A., Rozhkov A.F. Taking into account the twisted shape of the cruciform nagel in the calculation of beam wooden structures when they are reinforced by increasing the cross section. Stroitel’naya mekhanika i raschet sooruzheniy. 2016. No. 6, pp. 55–59. (In Russian).
10. Zhadanov V.I., Arkaev M.A., Kotlov V.G. Experimental studies of wooden beams reinforced with twisted cruciform rods. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 11, pp. 5–11. (In Russian).
11. Zhadanov V.I., Arkaev M.A., Stolpovsky G.A. Reinforcement of wooden structures using twisted cruciform rods. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 5, pp. 25–31. (In Russian).
12. Pyatikrestovsky K.P., Khunagov H.S. Nonlinear deformations of statically indeterminate wooden structures. Izvestiya of higher educational institutions. Construction. 2013. No. 11–12, pp. 21–30. (In Russian).
13. Pyatikrestovsky K.P., Travush V.I., Pogoreltsev A.A., Klyukin A.A. Development of solid wood structures for infrastructure facilities. Mezhdunarodnyi zhurnal po raschetu grazhdanskikh i stroitel’nykh konstruktsii. 2018. Vol. 14. No. 1, pp. 145–154. (In Russian).

For citation: Klyukin A.A. Experimental studies of compressed-bendable elements of composite cross-section on screwed-in rods. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 58–65. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-58-65

Hybrid Polymer Composites for Structural Purposes

Number of journal: 12-2023
Autors:

Valiev A.I.,
Suleimanov A.M.

DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57
УДК: 691.175

 

AbstractAbout AuthorsReferences
A review of foreign and domestic literature and practice on the use of polymer composites for structural purposes in the field of construction is carried out. The main factors hindering the widespread introduction of polymer composites in the construction sector have been identified: polymer composite profiles manufactured at the factories duplicate the shapes of profiles of metal analogues with isotropic mechanical properties; not all structural elements made of polymer composites meet the defining condition of strength testing according to the second limit state (for deformations), this leads to an increase in cross-sections, a decrease in the pitch of structural elements; problems related to insufficient information on durability, involving the use of overestimated values of the coefficients of the working conditions of the material due to insufficient knowledge of the properties and a significant spread of physical and mechanical characteristics; problems related to import substitution of polymer composite components. A scientific problem has been formulated, which consists in studying the mechanisms of formation of the adhesive strength of hybrid composites at the fiber-matrix interface, followed by the development of effective ways to regulate their condition in order to ensure a strong connection. The actual tasks, the solution of which needs to be concentrated in order to accelerate the process of introducing hybrid polymer composites for structural purposes, are presented.
A.I. VALIEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. SULEIMANOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. Sapunov V.T. Strength, reliability and durability of composites as structural materials. Kompozity i nanostruktury. 2016. Vol. 8. No. 2. Iss. 30, pp. 110–119. (In Russian).
2. Mercier C., Khelil A., Al Mahmoud F., Blin-Lacroix J.L., Pamies A. Experimental investigations of buckling behaviour of steel scaffolds. Structures. 2021. Vol. 33, pp. 433–450. DOI: 10.1016/J.ISTRUC.2021.04.045
3. Kayumov R.A., Shakirzyanov F.R. Large deflections and stability of low-angle arches and panels during creep flow. Advanced Structured Materials. 2021. Vol. 141, pp. 237–248. DOI: 10.1007/978-3-030-54928-2_18
4. Zheng Y., Guo Z. Investigation of joint behavior of disk-lock and cuplok steel tubular scaffold. Journal of Constructional Steel Research. 2021. Vol. 177. DOI: 10.1016/J.JCSR.2020.106415
5. Peng J.L., Ho C.M., Chan S.L., Chen W.F. Stability study on structural systems assembled by system scaffolds. Journal of Constructional Steel Research. 2017. Vol. 137, pp. 135–151. DOI: 10.1016/J.JCSR.2017.06.004
6. Donetskii K.I., Usacheva M.N., Khrul’kov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM. 2022. No. 6. Iss. 112, pp. 58–67. (In Russian). DOI: 10.18577/2307-6046-2022-0-6-58-67
7. Khrul’kov A.V., Donetskii K.I., Usacheva M.N., Goryanskii A.N. Infusion methods for the manufacture of polymer composite materials (review). Part 2. Trudy VIAM. 2022. No. 7. Iss. 113, pp. 50–62. (In Russian). DOI: 10.18577/2307-6046-2022-0-7-50-62
8. Kuznetsov I.L., Salakhutdinov M.A., Aripov D.N., Fakhrutdinov A.E. Development and experimental studies of canopy structures over the stands from pultrusion fiberglass profiles. Izvestiya of higher educational institutions. Construction. 2019. No. 3, pp. 96–108. (In Russian).
9. Suleimanov A.M., Shakirov A.R., Agliullina A.F., Starovoitova I.A. Investigation of short-term and long-term strength of adhesive adhesive joints for external reinforcement systems of building structures. Izvestiya of the KSACU. 2018. No. 4. Iss. 46, pp. 309–318. (In Russian).
10. Salakhutdinov M.A., Kayumov R.A., Aripov D.N., Khanekov A.R. Numerical study of the bearing capacity of a composite I-shaped section beam of pultruded fiberglass profiles. Izvestiya of the KSACU. 2022. No. 2. Iss. 60, pp. 15–23. (In Russian). DOI: 10.52409/20731523_2022_2_15 EDN: BHRXOY
11. Skudra A.M., Bulavs F.Ya. Strukturnaya teoriya armirovannykh plastikov [Structural theory of reinforced plastics]. Riga: Zinatne. 1978. 192 p.
12. Potyrała P.B. Use of fibre-reinforced polymers in bridge construction. State of the art in hybrid and all-composite structures. 2011. http://upcommons.upc.edu/pfc/handle/2099.1/12353 (Date of access 18.10.2023).
13. Keller T. Use of fibre reinforced polymers in bridge construction. SED 7. – Zurich: IABSE, 2003. 131 p.
14. Shenoi R.A., Moy S.J., Hollaway L.C. Advanced polymer composites for structural applications in construction. Southampton: Southampton University. 2002. https://www.icevirtuallibrary.com/doi/abs/10.1680/apcfsaic.31227.0001 (Date of access 18.10.2023).
15. Lightweight thermoset composites. Materials in use, their processing and applications / Edited by Peter Dufton. Shrewsbury: Rapratehnology limited. 2000. 212 р.
16. The international handbook of FRP composites in civil engineering / Edited by Manoochehr Zoghi. – CRC Press, 2013. 706 p.
17. Hayes M.D., Lesko J.J., Haramis J., Cousins T.E., Gomez J., Massarelli P. Laboratory and field testing of composite bridge superstructure. ASCE. Journal of Composites for Construction. 2000. Vol. 4. No. 3, pp. 120–128.
18. Hayes M.D., Lesko J.J., Cousins T., Waldron C., Witcher D., Barefoot G., Gomez J. Design of a short span bridge using FRP girders. Composites in Construction International Conference, October 10–12, 2001, Porto, Portugal.
19. Ozerov S.N., Pankov A.V. Selection of pedestrian bridge structural-strength scheme and profile assortment. Introduction of the experience of applied advanced aircraft engineering technologies in industry and transportation. Moscow. 2004. Iss. 3, pp. 42–48. (In Russian).
20. Ushakov A.E., Klenin Yu.G., Sorina T.G., Khairetdinov A.Kh., Safonov A.A. Bridge structures made of composites. Kompozity i Nanostruktury. 2009. No. 3, pp. 25–37. (In Russian).
21. Klenin Yu.G., Ozerov S.N., Semenov V.T., Usha-kov A.E., Khairetdinov A.Kh. Bridge structures made of fiberglass. Introduction of the experience of applied advanced aircraft engineering technologies in industry and transportation. Moscow: Publishing House TsAGI. 2001. Iss. 1, pp. 135–140. (In Russian).
22. Ivanov A.N. Prospects of application of bolt-friction joints of elements made of polymer fiber-reinforced composites. Izvestiya of higher educational institutions. Construction. 2013. No. 10, pp. 104–109. (In Russian).
23. Hughes J.D.H. The carbon fibre/epoxy interface – a review. Composites Science and Technology. 1991. Vol. 41, pp. 13–45.
24. Kim J.-K., Mai Y.-W. Engineered interfaces in fiber reinforced composites. Oxford: Elsevier, 1998. 486 р.
25. Nguyen D.A., Starostina I.A., Stoyanov O.V. Evaluation of the surface free energy of disperse additives for polymeric compositions under selective wetting conditions. Polymer Science, Series D. Glues and Sealing Materials. 2015. Vol. 8, No. 4, pp. 280–286.
26. Kramarev D.V., Osipchik V.S., Chalaya N.M., Berezina A.B., Kolesnikov A.V. Study of interfacial phenomena at the fiber-binder interface in imidoorganoplastics. Plasticheskie massy. 2017. No. 7–8, pp. 3–6. (In Russian).
27. Lizunov D.A., Osipchik B.C., Olikhova Yu.V., Kravchenko T.P. Influence of epoxy oligomer on the properties of epoxyphenolic binder and carbon fiber reinforced plastics based on it. Plasticheskie massy. 2013. No. 9, pp. 39–42. (In Russian).
28. Starostina I.A., Stoyanov O.V. Development of methods for evaluation of surface acid-base properties of polymeric materials. Vestnik of the Kazan Technological University. 2010. No. 4, pp. 58–68. (In Russian).

For citation: Valiev A.I., Suleimanov A.M. Hybrid polymer composites for structural purposes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57

Formation of the Natural Framework During the Reorganization of Industrial Zones in Rostov-Na-Don

Number of journal: 12-2023
Autors:

Slepnev M.A.,
Shmyglina E.V.

DOI: https://doi.org/10.31659/0044-4472-2023-12-46-50
УДК: 711.4-112

 

AbstractAbout AuthorsReferences
The current situation in the largest cities causes concern among residents and dictates the need to develop new systematic urban planning approaches aimed at creating a comfortable and safe living environment and preserving the natural and recreational framework of the city (hereinafter referred to as the NRF). he absence of regulations on the use of territories located in the vicinity of the NRF, an increase in the density of development leads to an increase in recreational load. Due to the fact that the object in question performs the functions of recreational value, the article substantiates the need for the formation of a NRF taking into account the reorganization of industrial zones. The task set has scientific and practical significance, aimed at improving the quality of urban planning, improving the state of natural conditions, ensuring sustainable territorial development of the city as a whole.
M.A. SLEPNEV, Candidate of Sciences (Engineering), Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. SHMYGLINA, Masters Student

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Medvedkov A.A., Nikanorova A.D., Shabalina N.V. Functional zoning of Kirovsk city (Murmansk region) in the conditions of tourist and recreational development of its territory. InterGIS. Geoinformation support of sustainable development of territories: Proceedings of Intern. conf. 2019. Vol. 25. Part 2, pp. 429–436. (In Russian). DOI: 10.35595/2414-9179-2019-2-25-429-436
2. Slepnev M.A., Melnikova E.V. Assessment of the recreational load of the Park Zaryadye PKIOI. Ekologiya urbanizirovannykh territoriy. 2019. No. 4, pp. 105–112. (In Russian).
3. Filippov V.N., Kiselnikova D.Yu. Limit parameters of residential zones development. To the issue of improving the ZPZ of Novosibirsk. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 11, pp. 29–32. (In Russian)
4. Milad Dehghani Pour, Ali Akbar Barati Hossein Azadi, Jürgen Scheffran, Mehdi Shirkhani. Analyzing forest residents’ perception and knowledge of forest ecosystem services to guide forest management and biodiversity conservation. Forest Policy and Economics. 2023. Vol. 146. 102866. https://doi.org/10.1016/j.forpol.2022.102866
5. Gordon V.A., Bakaeva N.V., Chernyaeva I.V. Study of the factors of demographic growth of the population of the region. Scientific Journal of Construction and Architecture. 2023. No. 1 (69), pp. 123–134. DOI: 10.36622/VSTU.2023.69.1.010
6. Vanya Stoycheva, Davide Geneletti. A review of regulating ecosystem services in the context of urban planning. Journal of the Bulgarian Geographical Society. Vol. 48, pp. 27–42. DOI: 10.3897/jbgs.e93499
7. Bakaeva N.V., Matyushin D.V., Chernyaeva I.V. Integrated security as-sessment engineering construction object. E3S Web of Conferences. 2023. 371. 02043. AFE-2022. https://doi.org/10.1051/e3sconf/202337102043
8. Slepnev M.A., Filiakova E.I. Assessment of the recreational load of the urban park of culture and recreation Orel city. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2019. No. 3 (27), pp. 101–110. (In Russian).
9. Kormina A.A., Shcherbina E.V. Methodical approach to justification of functional-planning organization and assessment of the residential environment of the city. V International Conference “Sustainable Development of Territories”. May 17–19. 2023, Moscow. pp. 111–117.
10. Slepnev, M.A., Popov A.V. Ecological capacity of urban natural-anthropogenic territorial complexes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 57–60. (In Russian).
11. Bakaeva N.V., Gordon V.A., Chernyaeva I.V. Forecasting of socio-demographic characteristics in urban design. Gradostroitel’stvo i arkhitektura. 2023. Vol. 13. No. 3, pp. 151–162. (In Russian). DOI: 10.17673/Vestnik.2023.03.19
12. Slepnev M.A., Bakaeva N.V. Project functional zoning of recreational territories. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 31–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-31-37
13. Slepnev M.A., Ryazantseva A.A. Ensuring the sustainable development of the «Ostankino» in Moscow. Vestnik MSUCE. 2021. Vol. 16. No. 9, pp. 1115–1123. (In Russian).

For citation: Slepnev M.A., Shmyglina E.V. Formation of the natural framework during the reorganization of industrial zones in Rostov-Na-Don. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 46–50. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-46-50

Accumulated Deformations of the Historical Development of St. Petersburg

Number of journal: 12-2023
Autors:

Shashkin V.A.

DOI: https://doi.org/10.31659/0044-4472-2023-12-32-45
УДК: 728.03

 

AbstractAbout AuthorsReferences
An analysis of the deformations of the ordinary historical buildings of St. Petersburg, accumulated over the past 150–200 years, is presented. An effective way to assess the accumulated unevenness of sediments and rolls of historical buildings is proposed, which makes it possible to obtain a reliable idea of the shape of the deformation of the building. On the example of a representative sample of buildings from two central parts of the city, it is shown which forms of deformations prevail in the historical center. It was revealed that in half of the cases deformations occur in the form of bending in the longitudinal direction and roll of the facade walls outward in the cross section, which is most dangerous for buildings. The dependences of the relative unevenness of the settlement of historical buildings on the ratios of their length and width to height are given. The reasons for the formation of a characteristic type of deformations in the form of a bend are noted. The results of the assessment of the accumulated relative unevenness of sediments that buildings received in the course of their existence made it possible to establish that the accumulated deformations are more than an order of magnitude higher than the maximum permissible values for similar structures of new construction. At the same time, the operational suitability of buildings is maintained, which indicates their durability under the condition of constant maintenance and regular repairs. It is proposed to take into account the accumulated unevenness of settlement when assessing the category of technical condition of historical buildings and monuments. On the basis of on the conducted research, proposals are made to clarify the requirements of the current norms regarding the appointment of maximum additional deformations of brick historical buildings and cultural heritage sites.
V.A. SHASHKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Institute «Georeconstruction” (4, Izmaylovskiy pr., St. Petersburg, 190005, Russian Federation)

1. Burland J.D., Wroth C.P. Settlement of buildings and associated damage. State-of-the-Art Review. Proc. Conf. Settlement of Structures. Cambridge: Pentech Press. London. 1974, pp. 611–654.
2. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Совместные расчеты системы «основание – здание» // Труды конф. РОМГГиФ. М., 2007. Т. 2. С. 307–312.
2. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Joint calculations of the «foundation – building» system. Proceedings of the conf. ROMGGiF. Moscow. 2007. Vol. 2, pp. 307–312.
3. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Взаимодействие зданий и оснований. Геотехника, 2009. № 1. С. 6–19.
3. Ulitsky V.M., Shashkin A.G., Shashkin K.G. Interaction of buildings and foundations. Geotechnica. 2009. No. 1, pp. 6–19. (In Russian).
4. Улицкий В.М., Шашкин А.Г., Шашкин К.Г., Шашкин В.А. Основы совместных расчетов зданий и оснований. СПб.: Геореконструкция. 2014. 328 с.
4. Ulitsky V.M., Shashkin A.G., Shashkin K.G., Shashkin V.A. Monitoring of buildings and structures during construction and operation [Fundamentals of joint calculations of buildings and grounds]. Saint Petersburg: Georeconstruktciya. 2014. 328 p.
5. Шашкин А.Г., Шашкин К.Г., Богов С.Г., Шашкин В.А., Шашкин М.А. Мониторинг зданий и сооружений при строительстве и эксплуатации. СПб.: Геореконструкция, 2021. 640 с.
5. Shashkin A.G., Shashkin K.G., Bogov S.G., Shashkin  V.A., Shashkin M.A. Monitoring of buildings and structures during construction and operation. Saint Petersburg: Georeconstruction. 2021. 640 p.
6. Шашкин А.Г., Шашкин В.А. Регламентация градостроительной деятельности в Санкт-Петербурге в XVIII–XIX вв. и ее технические следствия // Жилищное строительство. 2023. № 9. С. 86–101. DOI: https://doi.org/10.31659/0044-4472-2023-9-86-101
6. Shashkin A.G., Shashkin V.A. Reglamentation of urban planning activities in St. Petersburg in the 18th–19th centuries and its technical consequences. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 86–101. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-86-101
7. Семенцов С.В. Формирование принципов сохранения архитектурно-градостроительного наследия Санкт-Петербурга на основе закономерностей трехвекового градостроительного развития // Вестник Санкт-Петербургского университета. Искусствоведение. 2013. Вып. 2. С. 190–211.
7. Sementsov S.V. Formation of principles of preservation of architectural and urban heritage of St. Petersburg on the basis of patterns of three-century urban development. Vestnik of St. Petersburg University. Art history. 2013. Iss. 2, pp. 190–211. (In Russian).
8. Семенцов С.В. Градостроительная составляющая жилой функции Санкт-Петербурга и санкт-петербургской агломерации 1703–2006 гг. // Вестник Санкт-Петербургского университета. История. 2007. Вып. 3. С. 63–70.
8. Sementsov S.V. The town-planning component of the residential function of St. Petersburg and the St. Petersburg agglomeration of 1703–2006. Vestnik of St. Petersburg University. Story. 2007. Iss. 3, pp. 63–70. (In Russian).
9. Polshin D.E. and Tokar R.A. Maximum allowable non-uniform settlement of structures. Proceedings 4th Int. Conference On Soil Mechanics and Foundation Engineering. Butterworth’s scientific: London. UK. 1957. Vol. 1, pp. 402–404.
10. Burland J.B., Broms B.B., De Mello V.F.B. Behaviour of foundations and structures. Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo. Japan. 1977, pp. 495–546.
11. Skempton A. W. and McDonald D.H. The allowable settlements of buildings. Proceedings Institution of Civil Engineers. 1956. Part III. Vol. 5 (No. 50), pp. 727–768.
12. Bjerrum L. Allowable settlement of structures. Proceedings European conference on soil mechanics and foundation engineering. Wiesbaden. Deutsche Gesellschaft für Erd-und Grundbau e. V. 1963. 15–18 October. Vol. 3, pp. 135–137.
13. Бургиньоли А., Ямиолковский М., Виджиани К. Применение геотехники как компонента междисциплинарного подхода для сохранения исторических городов и памятников // Развитие городов и геотехническое строительство. 2010. № 1. С. 1–45.
13. Bourguignoli A., Yamiolkovsky M., Vigiani K. Application of geotechnics as a component of an interdisciplinary approach for the preservation of historical cities and monuments. Razvitie gorodov i geotekhnicheskoe stroitel’stvo. 2010. No. 1, pp. 1–45. (In Russian).
14. Шашкин А.Г., Васенин В.А. Вековые осадки зданий Санкт-Петербурга. СПб.: Геореконструкция, 2022. 440 с.
14. Shashkin A.G., Vasenin V.A. Vekovye osadki zdanii Sankt-Peterburga [Age-old precipitation of buildings in St. Petersburg]. Saint Petersburg: Georeconstruktciya. 2022. 440 p.
15. Шарлыгина К.А. Опыт реконструкции исторических жилых зданий Санкт-Петербурга. СПб.: Петрополис, 2019. 136 с.
15. Sharlygina K.A. Opyt rekonstruktsii istoricheskikh zhidykh zdanii Sankt-Peterburga [Experience of reconstruction of historical residential buildings of St. Petersburg]. Saint Petersburg: Petropolis. 2019. 136 p.

For citation: Shashkin V.A. Accumulated deformations of the historical development of St. Petersburg. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 32–45. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-32-45

Increasing the Bearing Capacity of the Base of the Pile Heel

Number of journal: 12-2023
Autors:

Shulyat'ev O.A.,
Shulyat'ev S.O.,
Shikhranov P.G.,
Orekhov V.V.,
Rozental N.K.

DOI: https://doi.org/10.31659/0044-4472-2023-12-26-31
УДК: 624.154.8

 

AbstractAbout AuthorsReferences
The results of experimental studies of methods for increasing the bearing capacity of the base of the pile heel are presented, as well as the sediment-load dependences for two piles with a reinforced heel using various technologies and one pile without reinforcement are presented. In recent years, several ways have been developed to increase the bearing capacity of the base of the pile heel, research on which has been carried out to a limited extent. Nevertheless, the issue of accounting for the bearing capacity of the heel is currently very acute, as it can play a key role in determining the bearing capacity of piles and the total number of piles.
O.A. SHULYAT'EV1, Doctor of Sciences (Engineering), Deputy Director for Science,
S.O. SHULYAT'EV1, Candidate of Sciences (Engineering), Leading Researcher,
P.G. SHIKHRANOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. OREKHOV1, Doctor of Sciences (Engineering), Chief Researcher;
N.K. ROZENTAL2, Doctor of Sciences (Engineering), Chief Researcher

1 Research Institute of Bases and Underground Structures (NIIOSP) named after N.M. Gersevanov, Research Center of Construction JSC (59, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)
2 Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev, Research Center of Construction JSC (59, 2nd Institutskaya Street, Moscow, 109428, Russian Federation)

1. Reese L.C., O’Neil M.W. Field Load Tests of Drilled Shafts. Proceedings of International Seminar on Deep Foundations on Bored and Auger Piles. Balkema. Rotterdam. 1988.
2. Meyerhof G.G. The Ultimante Bearing Capacity of Foundations. Geotechnique. 1951. Vol. 2. No. 4, pp. 301–332.
3. Шулятьев О.А. Основания и фундаменты высотных зданий. М.: АСВ, 2020. 442 c.
3. Shulyatyev O.A. Osnovaniya i fundamenty vysotnykh zdanii [Foundations and foundations of high-rise buildings]. Moscow: ASV. 2020. 442 p.
4. Shulyat’ev O.A., Sharafutdinov R.F. & Shulyat’ev S.O. Generalization of the test results of bored piles in rocky soils. Soil Mechanics and Foundation Engineering. 2022. No. 59, pp. 1–6. DOI: https://doi.org/10.1007/s11204-022-09777-9
5. Sharafutdinov R.F., Shulyat’ev O.A., Isaev O.N., Zakatov D.S. et al. Studies of interaction of drilled piles with rocky soils. Soil Mechanics and Foundation Engineering. 2022. No. 59, pp. 430–436. DOI: https://doi.org/10.1007/s11204-022-09833-4
6. Mullins G., Dapp S., Frederick E., Wagner V. Post grouting drilled shaft tips. Tampa, Florida: University of South Florida, 2004.
7. Dapp S.D. Muchard М., Brown D.A. Experiences with base grouted drilled shafts in the southeastern United States. In: Prosceeding of 10th International Conference on Piling and Deep Foundations. 2006.
8. Чиненков Ю.А. Исследование работы набивных свай в скважинах с уплотнением грунта на забое: Дис. … канд. техн. наук. М., 1982. С. 100–125.
8. Chinenkov Yu. A. Investigation of the work of packed piles in wells with soil compaction at the bottom. Cand. Diss. (Engineering). Moscow. 1982, pp. 100–125. (In Russian).
9. Bruce D.A. Enhancing the performane of large diameter piles by grouting. Ground Engineering. Brentwood, Essex. 1986.

For citation: Shulyat'ev O.A., Shulyat'ev S.O., Shikhranov P.G., Orekhov V.V., Rozental N.K. Increasing the bearing capacity of the base of the pile heel. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 26–31. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-26-31

Determination of the Reduced Heat Transfer Resistance of Opaque Sections of Facade Translucent Structures

Number of journal: 12-2023
Autors:

Yuryshev E.S.,
Verkhovsky A.A.,
Potapov S.S.

DOI: https://doi.org/10.31659/0044-4472-2023-12-22-25
УДК: 692.82

 

AbstractAbout AuthorsReferences
The thermal engineering characteristics of the facade translucent structures (FTS) are considered. The analysis of the results of thermal engineering tests of structures in the climate chamber for various manufacturers has been carried out. As a result of comparing the test results with the calculated data of the reduced resistance to heat transfer, their significant discrepancy was revealed. A method has been developed for determining the coefficient of linear inhomogeneity of the opaque part of the FTS based on laboratory tests with different fillings for different outdoor temperatures. Based on the coefficients of linear inhomogeneity of the opaque part of the CFS determined in laboratory conditions, it is proposed to determine reliable values of their reduced resistance to heat transfer for different design options.
E.S. YURYSHEV1, Leading Design Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. VERKHOVSKY2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.S. POTAPOV2, Researcher, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 LLC “Alcon-Trade-System” (2, str. 12-13-14, Electrodnaya Street, Moscow, 111524, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Elokhov A.E., Verkhovsky A.A., Borisov V.A. Comparison of the effectiveness of insulation schemes in systems of hinged ventilated facades. Stroitelnye nauki. 2018. No. 4, pp. 116–122. (In Russian).
2. Malyavina E.G., Uryadov M.I., Elohov A.E. Calculation of thermal conditions generated during the radiant-convective heat exchange process in a room of a building with enhanced thermal protection. Stroitel’nye Materialy [Construction Materials]. 2022. No. 5, pp. 77–82. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-802-5-77-82
3. Malyavina E.G., Frolova A.A., Landyrev S.S. Microclimate parameters evaluation for spaces with windows of different thermal protection. Light&Engineering. 2021. No. 29(5), pp. 61–67. DOI: 10.33383/2021-078
4. Liang Yu., Zhang Nan, Huang G. Thermal environment and thermal comfort built by decoupled radiant cooling units with low radiant cooling temperature. Building and Environment. 2021. Vol. 206. 108342. https://doi.org/10.1016/j.buildenv.2021.108342
5. Malyavina E.G., Landyrev S.S. Checking for compliance with GOST 30494–2011 requirements for indoor environment parameters at the service zone border. AVOK. 2022. No. 2, pp. 40–42. (In Russian).
6. Malyavina E.G., Gnezdilova E.A., Levina Yu.N. Development of calculated resistances to heat transfer of floors via the ground using modern methods of their thermal protection. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 44–48. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-44-48
7. Gagarin V.G., Malyavina E.G., Ivanov D.S. Development of Climate Data as a Specific “Reference Year”. Vestnik of the VolgSUACE. 2013. No. 31 (50). Vol. 1. Russian Cities, pp. 343–349. (In Russian).

For citation: Yuryshev E.S., Verkhovsky A.A., Potapov S.S. Determination of the reduced heat transfer resistance of opaque sections of facade translucent structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 22–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-22-25

https://www.traditionrolex.com/11