The Actual Volume Loss of Soil Coefficient for Tunnels in Cohesive and Rock Soils

Number of journal: 9-2023
Autors:

Ter-Martirosyan A.Z.,
Cherkesov R.H.,
Isaev I.O.,
Rud V.V.

DOI: https://doi.org/10.31659/0044-4472-2023-9-61-73
УДК: 624.19

 

AbstractAbout AuthorsReferences
The rapid development of underground spaces presents the challenge of obtaining realistic predictions of additional deformations during tunneling works. The obtained results must adequately reflect the need for deformation control and implementation of emergency measures. Insufficient or, conversely, overestimated results can lead to accidents or a lack of economic efficiency of the project. When assessing the impact, it is necessary to take into account the volume loss of soil coefficient (Cref), a parameter influencing the calculated values. However, its magnitude, as presented in the current normative documentation, is significantly overstated, which leads to an increase in additional calculated settlements of buildings and an enlargement of the calculated influence zone. In this study, using the construction of a new branch line of the Moscow Metro as an example, the authors performed a back analysis to adjust the volume loss of soil coefficient for tunnels with a diameter of 6 m in dispersion soils, as well as in cases where the face consists of multiple soil types, including rock soils. It is worth noting that the calculated volume loss of soil coefficient is a normalized parameter that takes into account the shield obliquity and the radial gap, while ensuring the stability of the face. Additionally, a comparison was made between the maximum additional displacements of the monitoring object and the pressure balance at the considered point. Based on the research findings, recommendations have been provided for determining the magnitude of the parameter in planar designs: Cref is equal to 1.2 for sand and 0.7 for clay. The analysis results of the correlation between additional displacements and the pressure balance showed that insufficient pressure balance leads to face instability of the soil and, consequently, exceeds the predicted values. In this study, the authors have published a summary table of volume loss of soil coefficients, which serves as a successful tool for prediction when combined with a well-selected pressure balance value. Additionally, recommendations are provided for assigning and considering the working condition coefficient
A.Z. TER-MARTIROSYAN1, Doctor of Sciences (Engineering), Vice-Rector (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.H. CHERKESOV2, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.O. ISAEV2, Director of Scientific and Technical Activities (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.V. RUD1, postgraduate of department of Soil Mechanics and Geotechnics

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 LLC Institute “Mosinzhproekt” (4/1, Sverchkov Lane, Moscow, 101000, Russian Federation)

1. Анищенко В.И., Атрушкевич В.А. Разработка структурной схемы для систем грунтопригруза при строительстве закрытых горных выработок и подходов прямоугольного сечения к продуктивным пластам через аллювиальные и смешанные геологические формации механизированным способом // Вестник Кузбасского государственного технического университета. 2019. № 1. С. 66–77. DOI:https://doi.org/10.26730/1999-4125-2019-1-66-77
1. Anishchenko V.I., Atrushkevich V.A. Development of a structural scheme for soil-loading systems during the construction of closed mine workings and approaches of rectangular cross section to productive strata through alluvial and mixed geological formations in a mechanized way. Vestnik KuzGTU. 2019. No. 1, pp. 66–77. (In Russian). DOI: https://doi.org/10.26730/1999-4125-2019-1-66-77
2. Мазеин С.В. Приборный контроль, прогноз и регулирование рабочих параметров щитовой проходки // Горный информационно-аналитический бюллетень. 2011. № 3. С. 90–96.
2. Mazein S.V. Instrument control, forecasting, and regulation of working parameters of the shield driving. Gorny informatsionno-analiticheskiy bulletin. 2011. No. 3, pp. 90–96. (In Russian).
3. Фугенфиров А.А. Строительство транспортных тоннелей: Учебное пособие. Омск: СибАДИ, 2007. 306 с.
3. Fugenfirov A.A. Stroitel’stvo transportnyh tonnelej: uchebnoe posobie [Construction of transport tunnels: a study guide]. Omsk: SibADI. 2007. 306 p.
4. Guglielmetti V., Grasso P., Mahtab A., Xu S. Mechanized Tunnelling in Urban Areas: Design methodology and construction control (1st ed.). CRC Press. 2007. 528 с. DOI: https://doi.org/10.1201/9780203938515
5. Мазеин С.В. Оперативный контроль пористости грунта на тоннельной щитовой проходке // Горный информационно-аналитический бюллетень. 2009. № 3. С. 106–115.
5. Mazein S.V. Real-time monitoring of soil porosity in tunneling using a shield driving method. Gorny informatsionno-analiticheskiy bulletin. 2009. No. 3, pp. 106–115. (In Russian).
6. Mollon G., Dias D., Soubra A.-H. Probabilistic analyses of tunneling-induced ground movements. Acta Geotechnica. 2013. Vol. 8, pp. 181–199. DOI: https://doi.org/10.1007/s11440-012-0182-7
7. Wang F., Du X., Li P. Predictions of ground surface settlement for shield tunnels in sandy cobble stratum based on stochastic medium theory and empirical formulas. Underground Space. 2023. Vol. 11, pp. 189–203. DOI: https://doi.org/10.1016/j.undsp.2023.01.003
8. Lavasan А.А., Zhao C., Barciaga T., Schaufler A., Steeb H, Schanz Т. Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotechnica. 2018. Vol. 13. No. 2, pp. 671–691. DOI: https://doi.org/0.1007/s11440-017-0595-4
9. Скворцов А.А. Оценка влияющих факторов на итоговую величину строительного зазора // Горный информационно-аналитический бюллетень. 2012. № 8. С. 129–133.
9. Skvorcov A.A. Estimation of influential factors on the final magnitude of construction clearance. Gorny informatsionno-analiticheskiy bulletin. 2012. No. 8, pp. 129–133. (In Russian).
10. Attewel P.B., Yeates J., Selby A.R. Soil movements inducted by tunneling and their effects on pipelines and structure. NY.: Glasgow and London Published in the USA by Chapman and Hall. 1986. 325 p.
11. Li Z., Lv J., Xie X., Fu H., Huang J., Li Z. Mechanical characteristics of structures and ground deformation caused by shield tunneling under-passing highways in complex geological conditions based on the MJS method. Applied Sciences. 2021. Vol. 11. No. 19, pp. 9323. DOI: https://doi.org/10.3390/app11199323
12. Boone S., Artigiani E., Shirlaw J.N., Ginanneschi R., Leinaala T. Use of ground conditioning agents for Earth Pressure Balance machine tunneling. In Congres International de Chambéry–Octobre. Chambery, France. 2005, pp. 313–319.
13. Anagnostou G., Kovari K. Face stability conditions with earth-pressure-balanced shields. Tunnelling and Underground Space Technology. 1996. Vol. 11. No. 11, pp. 165–173.
14. Park B., Lee C., Choi S., Kang T., Chang S. Discrete-element analysis of the excavation performance of an EPB shield TBM under different operating conditions. Applied Sciences. 2021. No. 11, pp. 5119. DOI: https://doi.org/10.3390/app11115119
15. Liu H., Shi J., Li J., Liu C. Investigation on the Influence Caused by Shield Tunneling: WSN Monitoring and Numerical Simulation. Advances in Civil Engineering. 2021, pp. 1–11. DOI: https://doi.org/10.1155/2021/6620706
16. Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Shishkina V.V. Surface Settlement during Tunneling: Field Observation Analysis. Applied Sciences. 2022. Vol. 12, pp. 9963. DOI: https://doi.org/10.3390/app12199963
17. Nuttens T., Stal C., Backer H., Schotte K., Bogaert P., Wulf A. Methodology for the ovalization monitoring of newly built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium). Automation in Construction. 2013. Vol. 43, pp. 1–9. DOI: https://doi.org/10.1016/j.autcon.2014.02.017
18. Bowers K.H., Hiller D.M. Ground movement over three years at the Heathrow Express Trial Tunnel. Geotechnical aspects of underground construction in soft ground. 1996, pp. 647–652.
19. Li L., Li J., Shi Z., Li L., Li M., Jin D., Dong G. Prediction of surface settlement induced by large-diameter shield tunneling based on machine-learning algorithms. Geofluids. 2022. Vol. 2022, pp. 1–13. DOI: https://doi.org/10.1155/2022/4174768
20. Wood A.M. The Circular Tunnel in Elastic Ground. Geotechnique. 1975. Vol. 25, pp. 115–127. DOI: https://doi.org/10.1680/geot.1975.25.1.115
21. Verruijt A., Booker J.R. Surface settlements due to deformation of a tunnel in an elastic half plane. Geotechnique. 1996. Vol. 46. No. 4, pp. 753–756.
22. Loganathan N., Poulos H. G. Analytical Prediction for Tunneling-Induced Ground Movements in Clays. Journal of Geotechnical and Geoenvironmental Engineering. 1998. Vol. 124, pp. 846–856. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(846)
23. Lee K. M., Rowe R. K., Lo, K. Y. Subsidence owing to tunnelling. I: Estimating the gap parameter. Canadian Geotechnical Journal. 1992. Vol. 29. No. 6. DOI: https://doi.org/10.1139/t92-104
24. Park K-H. Analytical solution for tunnelling-induced ground movement in clays. Tunnelling and Underground Space Technology. 2005. Vol. 20, pp. 249–261. DOI: https://doi.org/10.1016/j.tust.2004.08.009
25. Verruijt A. Complex variable solution for a deforming circular tunnel in an elastic half-plane. International Journal for Numerical and Analytical Methods in Geomechanics. 1997. Vol. 21, pp. 77–89.
26. Лиманов Ю.А. Осадки земной поверхности при сооружении тоннелей в кембрийских глинах. Л.: ЛИИЖТ, 1957. 238 с.
26. Limanov Yu.A. Osadki zemnoj poverhnosti pri sooruzhenii tonnelej v kembrijskih glinah [Subsidence of earth’s surface in the construction of tunnels in Cambrian clays]. Leningrad: LIIZhT, 1957. 238 p.
27. Peck R B. Deep excavation and tunnelling in soft ground. In Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Sociedad Mexicana de Mecanica. Mexico City, Mexico. 1969, pp. 147–150.
28. Moller S.C. Tunnel induced settlements and structural forces in linings. D.Sc. Thesis. Stuttgart, Germany. 2006. 174 p.
29. Kim C.Y., Bae G.J., Hong S.W., Park C.H., Moon H.K., Shin H.S. Neural network based prediction of ground surface settlements due to tunneling. Computers and Geotechnics. 2001. Vol. 28. Iss. 6–7, pp. 517–547. DOI: https://doi.org/10.1016/S0266-352X(01)00011-8. 2001
30. Huang H., Chang J., Zhang D., Zhang J., Wu H., Li G. Machine learning-based automatic control of tunneling posture of shield machine. Journal of Rock Mechanics and Geotechnical Engineering. 2022. Vol. 14. Iss. 4, pp. 1153–1164. DOI: https://doi.org/10.1016/j.jrmge.2022.06.001
31. Панжин А.А., Панжина Н.А. Деформационный мониторинг воздействия строительства метрополитена на здания и сооружения. Проектирование, строительство и эксплуатация комплексов подземных сооружений. Труды VI Международной конференции. Екатеринбург, 2019. С. 4–9.
31. Panzhin A.A., Panzhina N.A. Deformation monitoring of the impact of metro construction on buildings and structures. Design, Construction, and Operation of Underground Complexes. Proceedings of the VI International Conference. Ekaterinburg. 2019, pp. 4–9. (In Russian)
32. Zhang Z. X., Liu C., Huang X. Numerical analysis of volume loss caused by tunnel face instability in soft soils. Environmental Earth Sciences. 2017. Vol. 76, pp. 1–19. DOI: https://doi.org/10.1007/s12665-017-6893-1
33. Alsirawan R., Sheble A., Alnmr A. Two-dimensional numerical analysis for TBM tunneling-induced structure settlement: a proposed modeling method and parametric study. Infrastructures. 2023. Vol. 8 (5), pp. 88. DOI: https://doi.org/10.3390/infrastructures8050088
34. Sharafutdinov R.F., Isaev O.N., Zakatov D.S. A study of the ground volume loss modeling technique influence the soil displacement in course of shield tunneling. 2023. C. 1042–1051. DOI: https://doi.org/10.1201/9781003299127-147
35. Тер-Мартиросян А.З., Бабушкин Н.Ф., Исаев И.О., Шишкина В.В. Определение расчетного коэффициента перебора путем анализа данных мониторинга // Геотехника. 2020. Т. 12. № 1. C. 6–14. DOI: https://doi.org/10.25296/2221-5514-2020-12-1-6-14
35. Ter-Martirosyan A.Z., Babushkin N.F., Isaev I.O., hishkina V.V. Determining the actual ground loss of soil by analyzing monitoring data. Geotechnica. 2020. Vol. 12. No. 1, pp. 6–14. (In Russian). DOI: https://doi.org/10.25296/2221-5514-2020-12-1-6-14
36. Тер-Мартиросян А.З., Исаев И.О., Алмакаева А.С. Определение фактического коэффициента перебора (участок «Стахановская улица» – «Нижегородская улица») // Вестник МГСУ. 2020. Т. 15. Вып. 12. С. 1644–1653. DOI: https://doi.org/10.22227/1997-0935.2020.12.1644-1653
36. Ter-Martirosyan A.Z., Isaev I.O., Almakaeva A.S. Identification of the actual excess excavation ratio (Stakhanovskaya street – Nizhegorodskaya street site). Vestnik MGSU. 2020. Vol. 15, Iss. 12, pp. 1644–1653. (In Russian). DOI: https://doi.org/10.22227/1997-0935. 2020.12.1644-1653
37. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В. Определение фактического коэффициента перебора (участок «Косино» – «Юго-Восточная»). Construction and Geotechnics. 2021. Т. 12. № 2. С. 5–14. DOI: https://doi.org/10.15593/2224-9826/2021.2.01
37. Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O., Shishkina V.V. Determination of the actual excess excavation ratio (section “Kosino” – “Yugo-Vostochnaya”). Construction and Geotechnics. 2021. Vol. 12, No 2, pp. 5–14. (In Russian). DOI: https://doi.org/10.15593/2224-9826/2021.2.01
38. Тер-Мартиросян А.З., Кивлюк В.П., Исаев И.О., Шишкина В.В. Определение фактического коэффициента перебора в скальных грунтах // Жилищное строительство. 2021. № 9. С. 3–9. DOI: https://doi.org/10.31659/0044-4472-2021-9-3-9
38. Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O., Shishkina V.V. Determination of the actual outbreak ratio in rocky soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 9, pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-9-3-9
39. Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Rud V.V., Ambrushkevich M.I. Determination of parameters of the boundaries of the computational model for assessing the impact on the surrounding development from tunneling. International Journal for Computational Civil and Structural Engineering. 2023. Vol. 19. No. 2, pp. 95–108. DOI: https://doi.org/10.22337/2587-9618-2023-19-2-95-108
40. Воробьев Л.А., Чеботаев В.В. Определение давления пригруза при проходке тоннелей щитами с пеногрунтовым или бентонитовым креплением забоя. Труды международной научно-практической конференции «Тоннельное строительство России и стран СНГ в начале века: опыт и перспективы». М.: ТАР, 2002. C. 122–129.
40. Vorob’ev L.A., Chebotaev V.V. Determination of face pressure in shield tunneling with foam-soil or bentonite support systems. Proceedings of the International Scientific-Practical Conference ‘Tunnel Construction in Russia and CIS Countries in the Beginning of the Century: Experience and Perspectives’. Moscow, TAR, 2002, pp. 122–129. (In Russian).

For citation: Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Rud V.V. The actual volume loss of soil coefficient for tunnels in cohesive and rock soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 9, pp. 61–73. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-9-61-73


Print   Email