Личный кабинет

On the Criteria for the Deficiency of Seismic Resistance During the Operation of Housing Facilities in Seismically Active Territories

Number of journal: 3-2023
Autors:

Guryev V.V.,
Dorofeev V.M.,
Akbiev R.T.,
Bulykin V.I.

DOI: https://doi.org/10.31659/0044-4472-2023-3-50-61
УДК: 699.841

 

AbstractAbout AuthorsReferences
The article is devoted to issues related to the prevention of the consequences of natural and man-made impacts on the housing stock of the Russian Federation located in seismically active regions. Approaches for assessing the deficit of seismic resistance of objects based on the use of two digital databases are considered: seismological with information about the seismic hazard of the territory with records of ground vibration parameters and engineering seismometric with information about seismic resistance classes of buildings and structures with records of dynamic parameters of structures based on automated monitoring that provides a prediction of the consequences of natural and technogenic impacts on construction objects. The features of the housing stock in seismically active areas, including its structure, and the problems of assessing the deficit of seismic resistance of construction objects are considered, the result of the analysis of information received from the constituent entities of the Russian Federation located in seismically active regions is given, the identified systemic problems related to determining the deficit of seismic resistance of apartment buildings are indicated. A technology for assessing and monitoring mechanical safety during the operation of buildings and structures based on the digitalization of the processes of registering external influences and responses of structures to these influences, predicting changes in the seismic resistance of buildings, their accounting, certification and strengthening, is proposed. Proposals are made to ensure earthquake resistance during the operation of housing stock facilities located in seismically active areas and to minimize the negative consequences of seismic impacts.
V.V. GURYEV1, Doctor of Sciences (Engineering), Head of the Department of Seismic Safety and Disaster Risk Reduction, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.M. DOROFEEV2, Candidate of Sciences ((Physics and Mathematics), Scientific Supervisor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.T. AKBIEV1, Candidate of Sciences (Engineering), Head of the Department of Comprehensive Urban Planning Safety, (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.I. BULYKIN3, Chief Specialist of the Independent Structural Unit “Regional projects”(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Central Research and Design Institute of the Ministry of Construction, Housing and Utilities of the Russian Federation (29, Vernadskogo Avenue, Moscow, 119991, Russian Federation)
2 Specialized scientific and technical enterprise “PROFINZH” (SSTE PROFINZH”) (22, bldg. 3, Boytsovaya Street, Moscow, 107150, Russian Federation)
3 Public Law Company “Territory Development Fund” (PLC “Territory Development Fund” (5, Sharikopodshipnikovskaya Street, Moscow, 107150, Russian Federation)

1. Methodological recommendations for the engineering analysis of the consequences of earthquakes. Moscow: TSNIISK; MSSSS. 1980. 78 p.
2. Methodical manual on certification of buildings and structures in seismic areas. Petropavlovsk-Kamchatsky: DALNIIS. 1990. 93 p.
3. Methodological recommendations for the survey and certification of existing housing stock, social and cultural buildings and industrial enterprises in seismic areas of the Irkutsk region. Irkutsk: IZK SB RAS. 1991.
4. Savin S.N., Artemyev A.N., Petrunin K.L. Methodological aspects of the construction of buildings and engineering structures in earthquake-prone areas. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 1998. No. 6, pp. 37–38. (In Russian).
5. Berzhinskaya L.P., Berzhinsky Yu.A. Methods of certification of buildings in seismic areas. Voprosy inzhenernoi seismologii. 2009. Vol. 36. No. 2, pp. 57–69. (In Russian).
6. Drozdyuk V.N. Methodology for the survey of typical buildings in order to determine their seismic resistance and the need for seismic reinforcement. Technical regulations of Kamchatka TRK01-2009. Approved by the Ministry of Construction of the Kamchatka Territory on April 20, 2005. GUP “Kamchatskgrazhdanproekt”. 2009.
7. Dorofeev V.M. Monitoring of the state of buildings and structures of the existing development of cities prone to natural and manmade disasters. Problemy bezopasnosti pri chrezvychainykh situatsiyakh. 1998. No. 6, pp. 16–26. (In Russian).
8. Dorofeev V.M. On the safety of the operation of load-bearing structures of buildings and structures and practical ways to ensure it. Vestnik Rosiiskogo universiteta druzhby narodov. Seriya problemy kompleksnoi bezopasnosti. 2004. No. 1, pp. 44–52. (In Russian).
9. Dorofeev V.M., Denisov A.S. Forecast of the consequences of strong earthquakes. Prirodnye i tekhnogennye riski. Bezopasnost’ sooruzhenii. 2019. No. 1 (38), pp. 28–31. (In Russian).
10. Guryev V.V., Dorofeev V.M., Lysov D.A., Akbiev R.T. Fundamentals of monitoring of construction objects using the analysis of changes in their dynamic parameters. Academia. Arkhitektura i stroitel’stvo. 2021. No. 3, pp. 89–100. (In Russian).
11. Guryev V.V., Dorofeev V.M. On the problems of rationing the safety of built-up areas in seismic areas. Fundamental, claim and applied research of the RAASN on scientific support of the development of architecture, urban planning and the construction industry of the Russian Federation in 2019: Collection of scientific papers of the RAASN. Moscow: ASV. 2020, pp. 157–178.
12. Guryev V.V., Granev V.V., Dmitriev A.N., Dorofeev V.M., Kelasyev N.G., Lysov D.A. The experience of using automated monitoring stations on unique construction sites. Promyshlennoe i grazhdanskoe stroitel’stvo. 2021. No. 11, pp. 4–12. (In Russian).
13. Dorofeev V.M. Conceptual foundations of the functioning and development of the service of engineering seismometric observations. Stroitel’stvo i arkhitektura. Seismostoikoe stroitel’stvo. 1996. Ser. 14. Iss. 1, pp. 26–29. (In Russian).
14. Patent RF 2654830. Tsifrovaya inzhenerno-seismometricheskaya stantsiya s sistemoi monitoringa tekhnicheskogo sostoyaniya zdanii ili sooruzhenii. Guryev V.V., Dorofeev V.M., Lysov D.A., Denisov A.S., Katrenko V.G. Declared 23.06.2017. (In Russian).
15. Patent RF 2654831. Sposob mnogokanal’noi registratsii seismiche-skikh kolebanii na inzhenerno-seismometricheskoi stantsii. Guryev V.V., Dorofeev V.M., Lysov D.A., Denisov A.S., Katrenko V.G. Declared 23.06.2017. (In Russian).
16. Patent RF 2655462. Seismicheskii pribor dlya izmereniya dinamicheskikh vozdeistvii pri monitoringe tekhnicheskogo sostoyaniya nesushchikh konstruktsii zdanii i sooruzhenii. Guryev V.V., Dorofeev V.M., Lysov D.A., Denisov A.S., Katrenko V.G. Declared 23.06.2017. (In Russian).

For citation: Guryev V.V., Dorofeev V.M., Akbiev R.T., Bulykin V.I. On the criteria for the deficiency of seismic resistance during the operation of housing facilities in seismically active territories. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 50–61. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-50-61

Influence of Reinforcing Composite Mesh on the Strength of Walls Made of Cellular Concrete Blocks under the Action of Static and Dynamic Loads

Number of journal: 3-2023
Autors:

Granovsky A.V.,
Dzhamuev B.K.

DOI: https://doi.org/10.31659/0044-4472-2023-3-44-49
УДК: 691.328.4

 

AbstractAbout AuthorsReferences
The results of experimental studies of the strength of masonry walls made of cellular concrete blocks under various force influences are presented. It is noted that the use of walls made of cellular concrete blocks with a density of D400–D600 in seismic areas can significantly reduce the magnitude of the seismic load on the structure. The behavior of masonry under the action of loads simulating seismic actions was studied, taking into account its reinforcement with composite materials based on carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP). Data on test of full-size wall samples on the vibration platform, taking into account external reinforcement with carbon fiber tapes, are presented An increase in the seismic resistance of reinforced structures due to the use of composite materials has been revealed. The nature of the destruction of wall panels reinforced and non-reinforced with composite canvases is shown. According to the results of tests of fragments of walls made of cellular concrete blocks using reinforcement composite mesh based on basalt fiber, the effect of its use in axial stretching of masonry was noted. The use of a composite mesh with a 25x25 mm cell based on basalt fiber made it possible to increase the tensile strength of the masonry across the cross section by 28%.
A.V. GRANOVSKY, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
B.K. DZHAMUEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Trambovetsky V.P. On the use of cellular concrete in seismic construction. Beton i zhelezobeton. 1980. No. 9, pp. 46–48.
2. Trambovetskiy V.P. Cellular concrete abroad. Beton i zhelezobeton. 1988. No. 7, pp. 20-21.
3. Denis M. Lessons from the 1985 Mexican earthquake. Canadian Journal of Civil Engineering. 1986. Vol. 13. No. 5, pp. 535-557.
4. Polyakov S.V., Safargaliev S.M. Seismostoikost’ zdanii s nesushchimi kirpichnymi stenami [Earthquake resistance of buildings with load-bearing brick walls]. Alma-Ata: Kazakhstan. 1988. 188 р.
5. Steinbrugge K., Moran D. Inzhenernyi analiz posledstvii zemletryasenii 1952 g. v Yuzhnoi Kalifornii [Engineering analysis of the consequences of the 1952 earthquakes in Southern California]. Moscow: Gosstroyizdat. 1957. 270 p.
6. Polyakov S.V. Posledstviya sil’nykh zemletryasenii [Consequences of strong earthquakes]. Moscow: Stroyizdat. 1978. 311 р.
7. Williams D., Scribener J.C. Response of reinforced masonry shear walls to static and dynamic cyclic loading. Proceedings of the 5 WCEE. Rome. 1973.
8. Korchinsky I.L. [Seismostoikoe stroitel’stvo zdanii] Earthquake-resistant construction of buildings. Moscow: Vysshaya shkola. 1971. 320 p.

For citation: Granovsky A.V., Dzhamuev B.K. Influence of reinforcement composite mesh on the strength of walls made of cellular concrete blocks under the action of static and dynamic loads. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 44–49. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-44-49

Evaluation of the Accuracy and Completeness of the Climate Model for Calculating the Power Consumption by Air Conditioning Units

Number of journal: 3-2023
Autors:

Malyavina E.G.,
Malikova O.Yu.

DOI: https://doi.org/10.31659/0044-4472-2023-3-39-43
УДК: 629.5.048.3

 

AbstractAbout AuthorsReferences
The accuracy of estimating seasonal power consumption by air conditioning units in rooms depends on the accepted climate model as the initial climate information. The estimation of the accuracy of determining the power consumption by the air conditioning system in Moscow was carried out by calculation. Three variants of the probabilistic-statistical model were considered: two models obtained from data of different weather stations according to different weather stations: VDNKh (Exhibition of Achievements of National Economy) and Moscow State University for the time period 1966–1980, and the third according to MSU data for years 1980–2010. The results of calculating the power consumption of the air conditioning unit according to the data of various weather stations in the same locality, relating to the same period, practically coincide. The results of calculating the power consumption by the air conditioning unit, according to the data obtained at one weather station during different periods, reflect the weather features of each segment. Moreover, various details of the probabilistic-statistical climate model were considered, so the models consisted of cells of combinations for temperature and relative humidity with different steps: temperature from 2оC to 1оC, relative humidity from 5% to 2.5%. The probabilistic-statistical climate model is the most acceptable for calculating the inertia-free process of air treatment in air conditioning units.
Е.G. МALYAVINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O. Yu. MALIKOVA, Candidate of Sciences (Engineering) ((This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Samarin O.D., Lushin K.I. Assessment of the impact of climate change on the energy consumption for building microclimate systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
2. Dyurmenova S.S., Makhov A.Yu. Ways to improve energy efficiency in buildings. Molodoi уchenyi. 2020. No. 31 (321), pp. 18–21. (In Russian).
3. Esipenok A.Yu., Senova O.N., Fedorov A.V. Energoeffektivnost’ – glavnyi shag k ustoichivomu klimatu [Energy efficiency is the main step towards a sustainable climate]. Saint-Peterburg: RSoES. 2021. 40 p. (In Russian).
4. Nishtha Agrawal, Bhupendra Bahadur Singh, Vivek Kumar Pandey. Fidelity of Regional Climate Model v4.6 in capturing seasonal and subseasonal variability of Indian summer monsoon. Dynamics of Atmospheres and Oceans. V. 94. 2021, 101203. DOI: https://doi.org/10.1016/j.dynatmoce.2021.101203
5. Lysèv V.I., Kotsyulim N.N., Kuchanskii V.A. Calculation of energy consumption for heating and cooling of buildings. Nauchnyi zhurnal NIU ITMO. Seriya Kholodil’naya tekhnika i konditsionirovanie. 2018. No. 1, pp. 3–12. (In Russian).
6. Ulyasheva V.M., Mikhailova D.G. Numerical study of the microclimate of restaurant hall using a VRF system. Vestnik grazhdanskikh inzhenerov. 2021. No. 2 (85), pp. 150–157. (In Russian).
7. Malyavina E.G., Ivanov D.S. Development for the calculation of the standard year for determining the heat loss from the parts of the building buried in the ground. Trudy Glavnoi geofizicheskoi observatorii im. A.I. Voeikova. 2014. Iss. 571, pp. 182–191. (In Russian).
8. Malyavina E.G., Kryuchkova O.Yu. Probabilistic-statistical climate model for calculations of energy consumption by air conditioning systems. Vestnik MGSU. 2011. No. 3. Vol. 1, pp. 389–394. (In Russian).
9. Malyavina Е.G., Malikova О.Yu. Comparison of the completeness of the climate probability-statistic model and the reference year model. IOP Conference Series: Materials Science and Engineering. 365. 022009. DOI: 10.1088/1757-899X/365/2/022009
10. Malyavina E.G., Kryuchkova O.Yu., Kozlov V.V. Comparison of climate models for calculations of energy consumption by central air conditioning systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 6, pp. 24–26. (In Russian).

For citation: Malyavina E.G., Malikova O.Yu. Evaluation of the accuracy and completeness of the climate model for calculating the power consumption by air conditioning units. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 39–43. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-39-43

Possibilities of Innovative Industrial Technology of Prefabricated Monolithic Frame GC “Recon-SMK”

Number of journal: No.3-2023
Autors:

Shembakov V.A.

DOI: https://doi.org/10.31659/0044-4472-2023-3-32-38
УДК: 69.056.1

 

AbstractAbout AuthorsReferences
30 years of experience in the construction of housing, schools, kindergartens, and other social facilities using the innovative industrial technology of the prefabricated monolithic frame of the Recon-SMK Group of Companies has shown a high degree of freedom in creating a harmonious urban environment. The speed of construction of buildings and structures increases, and the cost of construction decreases when the plant for the production of building materials is located next to the construction site and at the same time has optimal capacity and universal technology that makes it possible to produce a wide range of products. Based on the experience of the Recon-SMK Group of Companies (Cheboksary), which offers Russian technological equipment for the production of high-quality, affordable and energy-efficient building materials, it is shown that the supply of reinforced concrete products to other regions due to an increase in transportation costs, which can be up to 90% of the cost of production, makes such production of building materials unprofitable. In order to create decent living conditions for specialists, including those working in small towns and villages, ensuring the successful development of the agro-industrial complex, it is proposed to build affordable housing and high-quality roads made of reinforced concrete products manufactured on universal domestic equipment “Mini-DSC” - the own development of the machine-building plant CJSC “Recon”, part of the GC “Recon-QMS”.
V.A. SHEMBAKOV, Head of GK “REKON-SMK”, General Director of ZAO “Rekon”, RF Honored Builder, Head of the Author 's Team for the development and implementation of SMK technology (This email address is being protected from spambots. You need JavaScript enabled to view it.)

ZAO “Rekon” (20a, Dorozhny Drive, Cheboksary, 428003, Chuvash Republic, Russian Federation)

1. Mailyan R.L., Mailyan D.R., Veselov Yu.A. Stroitel’nye konstruktsii [Building structures]. Rostov-on-Don: Feniks, 2005. 880 p.
2. Bondarenko V. M., Suvorkin D. G. Zhelezobetonnye i kamennye konstruktsii [Reinforced concrete and stone structures]. Moscow: Vysshaya shkola. 1987. 384 p.
3. Shembakov V.A. Possibilities to use the russian technology of precast-monolithic frame for construction of qualitative affordable housing and roads in Russia. Stroitel’nye Materialy [Construction Мaterials]. 2017. No. 3, pp. 9–15. (In Russian).
4. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-757-3-4-12
5. Shembakov V.A. Sborno-monolitnoe karkasnoe domostroenie [Combined and monolithic frame housing construction]. Cheboksary, 2013.
6. Nikolaev S.V. Innovative Replacement of Large-Panel Housing Construction by Panel-Monolithic Housing Construction (PMHC). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-3-3-10
7. Shapiro G.I., Zenin S.A., Sharipov R.Sh., Kudinov O.V. Rationing in large-panel housing construction: the new set of rules on design of large-panel constructive systems. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 2, pp. 10–15. (In Russian).
8. Shembakov V.A. Current industrial technology for manufacturing non-stressed and pre-stressed structures. Modernization of large-panel prefabrication plants. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 3, pp. 30–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-3-30-35
9. Kalabin A.V., Kukovyakin A.B. Mass housing estate: problems and prospects. Akademicheskii vestnik UralNIIproekt RAASN. 2017. No. 3 (34), pp. 55–60. (In Russian).
10. Pavlenko D.V., Shmelev S.E., Kuznetsov D.V., Sapronov D.V., Fisenko S.S., Damrina N.V. Universal system of prefabricated housing construction RB-South – from the idea to implementation on the construction site. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 4–10. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10

For citation: Shembakov V.A. Possibilities of innovative industrial technology of prefabricated monolithic frame GC "Recon-SMK". Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 32–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-32-38

The Trends in Prefabricated High­Rise Housing Construction: World and Domestic Experience

Number of journal: No.3-2023
Autors:

Rumyantsev E.V

DOI: https://doi.org/10.31659/0044-4472-2023-3-13-27
УДК: 69.056.1

 

AbstractAbout AuthorsReferences
To reduce the time of civil construction, modern industrial technologies of high­rise housing construction are considered. Construction based on precast reinforced concrete has a competitive advantage over in­situ housing construction in their mass production. Based on the analysis of world experience in high­rise prefabricated housing construction shows the possibilities of using prefabrication construction for buildings with a height of more than 200 m. In Russia, the experience of high­rise prefabricated housing construction is practically absent. At present, the PIK company is implementing the first 33­storey residential large­panel houses of the PIK platform. The article discusses the analysis of foreign and domestic experience in the implementation of high­rise structural buildings. The issues of design, scientific research, production, installation, quality control and monitoring of the state of structures during the life cycle of a high­rise large­panel building are outlined. The successful application of industrial building technologies based on prefabricated reinforced concrete makes it possible to ensure the quality of large­panel housing construction, increase the rate of construction of building structures by 2–3 times and reduce its time compared to in­situ buildings.
E.V. RUMYANTSEV, Head of the Design Department (This email address is being protected from spambots. You need JavaScript enabled to view it.)

LLC “PIK­Management” (19/1, Barrikadnaya Street, Moscow, 123242, Russian Federation)

1. Singhal S., Chourasia A., Chellappa S., Parashar J. Precast reinforced concrete shear walls: State of the art review. Structural Concrete. 2019. Vol. 20. Iss. 3.DOI: https://doi.org/10.1002/suco.201800129
2. Михеев Д.В., Гурьев В.В., Дмитриев А.Н., Бачурина С.С., Яхкинд С.И. Развитие индустриального гражданского строительства и типового проектирования на современном этапе // Жилищное строительство. 2022. № 7. С. 41–52. DOI: https://doi.org/10.31659/0044-4472-2022-7-41-52
2. Mikheev D.V., Guryev V.V., Dmitriev A.N., Bachurina S.S., Yakhkind S.I. Development of Industrial Civil Engineering and Standard Design at the Present Stage. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 7, pp. 41–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-7-41-52
3. Alfred A. Yee, Hon. D. Structural and economic benefits of precast/prestressed concrete construction. PCI Journal. 2001. Vol. 46. No. 4, pp. 34–42.
4. Boafo F.E., Kim J.H., Kim J.T. Performance of modular prefabricated architecture: case study-based review and future pathways. Sustainability. 2016. Vol. 558. No. 8 (6), pp. 1–16. DOI: https://doi.org/10.3390/su8060558
5. Chiang Y.-H., Edwin H.-W.C., Lok L.K.-L. Prefabrication and barriers to entry – a case study of public housing and institutional buildings in Hong Kong. Habitat International. 2006. No. 30, pp. 482–499. DOI: doi:10.1016/j.habitatint.2004.12.004
6. Smith R.E.S. Prefab architecture: a guide to modular design and construction. The USA. John Wiley & Sons Inc., 402 p.
7. Николаев С.В., Шрейбер А.К., Этенко В.П. Панельно-каркасное домостроение – новый этап развития КПД // Жилищное строительство. 2015. № 2. C. 3–7.
7. Nikolaev S.V., Schreiber A.K., Etenko V.P. Panel-frame housing construction – a new stage in the development of large-panel construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 2. C. 3–7. (In Russian).
8. Дубынин Н.В. От крупнопанельного домостроения ХХ в. к системе панельно-каркасного домостроения ХХI в. // Жилищное строительство. 2015. № 10. C. 12–19.
8. Dubynin N.V. From large-panel housing construction of the twentieth century. to the system of panel-frame housing construction of the XXI century // Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 10, pp. 12–19. (In Russian).
9. Сапачева Л.В. Модернизация крупнопанельного домостроения – локомотив строительства жилья экономического класса // Жилищное строительство. 2011. № 6. C. 2–6.
9. Sapacheva L.V. Modernization of large-panel housing construction – the locomotive of economy class housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 6, pp. 2–6. (In Russian).
10. Bester N. Concrete for high-rise buildings: performance requirements, mix design and construction consideration. Structural Concrete Properties and Practice. 2013, pp. 1–4.
11. Aoyama H. Design of modern highrise reinforced concrete structures. London: Imperial College Press. 2001. 442 p.
12. Clark G. Challenges for concrete in tall buildings. Structural Concrete. 2014. Vol. 15. Iss. 4, pp. 448–453. DOI: https://doi.org/10.1002/suco.201400011
13. Каприелов С.С., Травуш В.И., Карпенко Н.И., Шейнфельд А.В., Кардумян Г.С., Киселева Ю.А., Пригоженко О.В. Модифицированные бетоны нового поколения в сооружениях ММДЦ «Москва-Сити» // Строительные материалы. 2006. № 10 (622). C. 13–17.
13. Kaprielov S.S., Travush V.I., Karpenko N.I., Sheinfeld A.V., Kardumyan G.S., Kiseleva Yu.A., Prigozhenko O.V. Modified concretes of a new generation in the structures of MIBC «Moscow-City». Stroitel’nye Materialy [Construction Materials]. 2006. No. 10 (622), pp. 13–17. (In Russian).
14. Терехов И.Г., Могучева Т.А., Латыпова А.А., Самофеев Н.С. Методологические аспекты оптимизации качества формирования данных при выборе способа стандартизации требований к бетонным смесям и бетонных работ для высотных объектов // Интернет-журнал «НАУКОВЕДЕНИЕ». 2017. Т. 9. № 6. https://naukovedenie.ru/PDF/94TVN617.pdf
14. Terekhov I.G., Mogucheva T.A., Latypova A.A., Samofeev N.S. Methodological aspects of optimizing the quality of data generation when choosing a method for standardizing the requirements for concrete mixtures and concrete work for high-rise objects. Internet journal «NAUKOVEDENIE». 2017. Vol. 9. No. 6. https://naukovedenie.ru/PDF/94TVN617.pdf
15. Peiretti H.C, Navarro M.G. Concrete in high-rise buildings: practical experiences in Madrid. Structural Concrete. 2010. Vol. 11. Iss. 2, pp. 83–92. DOI: 10.1680/stco.2010.11.2.83
16. Vambersky J.N.J.A High-rise buildings in the Netherlands: hybrid structure and precast concrete. CTBUH 2004. October 10–13, Seoul, Korea, pp. 136–143.
17. Фаликман В.Р. Бетоны заданной функциональности – «Умные бетоны». Материалы конференции ICCX Россия. 3–6 декабря 2019. СПб., Россия. С. 52–63.
17. Falikman V.R. Concrete of a given functionality – «Smart concrete». Materials of the conference ICCX Russia. December 3–6, 2019. St. Petersburg. Russia, pp. 52–63.
18. Румянцев Е.В., Байбурин А.Х. Особенности применения самоуплотняющихся мелкозернистых бетонных смесей при зимнем бетонировании стыков // Строительные материалы. 2022. № 6. С. 51–57. DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57
18. Rumyantsev E.V., Bayburin A.Kh. The features of using self-compacting fine-grained fresh concrete during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57
19. Parker D., Wood A. The tall buildings reference book. New York: Routledge, 2013. 496 p.
20. Oldfield F., The Sustainable Tall Buildings. New York: Routledge, 2019. 281 p.
21. Trabucco D., Wood A., Vassart O., Popa N., Davis D. Life cycle assessment of tall building structural systems. Chicago: Council on Tall Buildings and Urban Habitat (CTBUH). 2015. 188 p.
22. FIB, bulletin No. 73. Tall buildings. Structural design of concrete buildings up to 300 m tall. International Federation for Structural Concrete (fib) and MPA The Concrete Centre. 2014. 158 p.
23. PCI Design Handbook and Prestressed Concrete. Chicago, Illinois, Precast/Prestressed Concrete Institute. 2010, 828 p.
24. CPCI Technical Information Bulletin: Total Precast Concrete High-Rise Construction and Provincial Building Codes. Ottawa Ontario, Canadian Precast/Prestressed Concrete Institute. 2020, 10 p.
25. FIB, bulletin No. 101. Precast Concrete in Tall Buildings. State-of-the-art Report. Task Group 6.7. International Federation for Structural Concrete (fib). 2021. 234 p.
26. Hummelen J.С. Precast Concrete in Framed Tube High-Rise Structures. Master thesis, Delft University of Teсhnology. June 2015, 137 p.
27. Gomez S.S., Metrikine A.V. Observation and interpretation of closely spaced fundamental modes of a high-rise building. Buildings. 2020. Vol. 1. Iss. 132, pp. 1–17. DOI: http://dx.doi.org/10.3390/buildings10070132
28. Jones G. Precast Concrete in Tall Buildings. CDC Ltd. 2019. 102 p. https://www.cimentoitambe.com.br/wp-content/uploads/pdf/GEORGE_JONES.pdf
29. FIRST Rotterdam. – de Architekten Cie. https://daf9627eib4jq.cloudfront.net/app/uploads/2017/01/attachment-chitektencie_first-rotterdam.pdf
30. Dahl K.K.B. Bella Sky Hotel – taking precast concrete to the limit. Structural Concrete. 2014. Vol. 15. Iss. 4, pp. 83–92. DOI: 10.1002/suco.201400017
31. Moere A.V., Wouters N. The role of context in media architecture. PerDis ‘12: Proceedings of the 2012 International Symposium on Pervasive Displays. June 2012, Article No. 12, pp. 1–6. DOI: https://doi.org/10.1145/2307798.2307810
32. Englekirk R.E. Design-construction of the paramount – A 39-Story precast prestressed concrete apartment building. PCI Journal. 2002. Vol. 47. Iss. 4, pp. 56–71. DOI: https://doi.org/10.15554/pcij.07012002.56.71
33. Ohno Y., Sumi A., Seo T. High-rise reinforced concrete building in Japan. CTBUH 2004 Seoul Conference. October 10–13, Seoul, Korea, pp. 286–289.
34. Ishikawa Y. Advanced pre-cast concrete system and innovative steel fibre reinforced concrete structural system in Japan. Proceedings of IWAMISSE 2018 the International Workshop on Advanced Materials and Innovative Systems in Structural Engineering: Seismic Practices. Istanbul, Turkey, 16 November, 2018, pp. 31–40.
35. Dick van K. 165 m of precast concrete. The Breaker: tallest fully prefabricated building in the world. Cement. 2016, pp. 18–25 [In Dutch].
36. Hagen S.J. Prefab concrete in high-rise. U Profiel. 2013, pp. 8–11 [In Dutch].
37. Hagen S.J. The Zalmhaven tower, an investigation on the feasibility of precast concrete in a high-rise building in the Netherlands. Research report. Delft: TU Delft. 2012, p. 289.
38. The Norra Tornen project. https://www.oma.com/projects/norra-tornen
39. Meuser P. Prefabricated Housing. Constructional and Design Manual. Berlin, Dom publishers, 2020. 432 p.
40. Дыховичный Ю.А., Максименко В.А. Сборный железобетонный унифицированный каркас: Опыт московского строительства. Проектирование, исследование, изготовление, монтаж, перспективы развития. М.: Стройиздат, 1985. 296 с.
40. Dykhovichny Yu.A., Maksimenko V.A. Prefabricated reinforced concrete unified frame: Experience of Moscow construction. Design, research, manufacture, installation, development prospects. Moscow: Stroyizdat. 1985. 296 p.
41. Николаев С.В. Возрождение крупнопанельного домостроения в России // Жилищное строительство. 2012. № 4. С. 2–8.
41. Nikolaev S.V. Revival of large-panel housing construction in Russia // Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 2–8.
42. Афанасьев П.Г. Решение проблемы доступного жилья эконом-класса с помощью модернизации индустриального КПД // Жилищное строительство. 2012. № 4. С. 26–28.
42. Afanasiev P.G. Solving the problem of affordable economy-class housing by modernizing industrial efficiency. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 4, pp. 26–28. (In Russian).
43. Пилипенко В.М., Потерщук В.А., Пецольд Т.М. Перспективы развития индустриального домостроения в Республике Беларусь. Современные проблемы внедрения европейских стандартов в области строительства: Сборник международных научно-технических статей. Минск, 2015. С. 8–14.
43. Pilipenko V.M., Poterschuk V.A., Petsold T.M. Prospects for the development of industrial housing construction in the Republic of Belarus. Modern problems of the implementation of European standards in the field of construction: Collection of international scientific and technical articles. Minsk. 2015, pp. 8–14. (In Russian).
44. Вахмистров А.И., Гобеев Э.К. Индустриальное домостроение. СПб.: Славутич, 2019. 260 с.
44. Vakhmistrov A.I., Gobeyev E.K. Industrial’noye domostroyeniye [Industrial building]. Sankt-Peterburg: Slavutich. 2019. 260 p.
45. Шембаков В.А. Инновационная индустриальная технология сборно-монолитного каркаса, разработанная ГК «Рекон-СМК» и используемая 20 лет на рынке РФ и СНГ // Жилищное строительство. 2019. № 3. С. 33–38. DOI: https://doi.org/10.31659/0044-4472-2019-3-33-38
45. Shembakov V.A. Innovation industrial technology of precast-monolithic frame developed by GC “Rekon-SMK” and used 20 years at the RF market. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 33–38. DOI: https://doi.org/10.31659/0044-4472-2019-3-33-38 (In Russian).
46. FIB: bulletin No. 43. Structural connections for precast concrete buildings. – International Federation for Structural Concrete (fib). Lausanne: Switzerland. 2008. 360 p.
47. FIB: bulletin No. 74. Planning and design handbook on precast building structures. Manual/Textbook. The International Federation for Structural Concrete (fib). Lausanne: Switzerland, 2014. 313 p.
48. Tolsma K.V. Precast concrete cores in high-rise buildings: Structural behavior of precast corner connections. Master’s Thesis Final Report. Delft: TU Delft, 2010. 81 p.
49. Алиев Г., Эйюбов Д. Новый принцип конструирования вертикальных стыков панелей // Жилищное строительство. 1965. № 1. С. 18–19.
49. Aliyev G., Eyyubov D. New principle of designing vertical joints of panels Zhilishchnoe Stroitel’stvo [Housing Construction]. 1965. No. 1, pp. 18–19. (In Russian).
50. Николаев С.В. Инновационная замена КПД на панельно-монолитное домостроение (ПМД) // Жилищное строительство. 2019. № 3. С. 3–10. DOI: https://doi.org/10.31659/0044-4472-2019-3-3-10
50. Nikolaev S.V. Innovative replacement of large-panel housing construction by panel-monolithic housing construction (PMHC). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 3, pp. 3–10. DOI: https://doi.org/10.31659/0044-4472-2019-3-3-10 (In Russian).
51. Киреева Э.И. Крупнопанельные здания с петлевыми соединениями конструкций // Жилищное строительство. 2013. № 9. С. 47–51.
51. Kireeva E.I. Large-panel buildings with loop connections of structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 9, pp. 47–51. (In Russian).
52. Данель В.В. Совершенствование петлевых стыков стеновых панелей // Жилищное строительство. 2014. № 1–2. С. 11–15.
52. Danel V.V. Improvement of loop joints of wall panels. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 1–2, pp. 11–15. (In Russian).
53. Суур-Аскола П. Технологически усовершенствованный продукт от компании Peikko – тросовая петля PVL // Жилищное строительство. 2013. № 3. С. 21–23.
53. Suur-Askola P. Technologically improved product from the company Peikko – PVL cable loop. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 3, pp. 21–23. (In Russian).
54. Зенин С.А. Проектирование жилых крупнопанельных домов с применением бессварных стыков на тросовых петлях // Жилищное строительство. 2013. № 7. С. 14–15.
54. Zenin S.A. Designing residential large-panel houses using non-welded joints on cable loops. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 7, pp. 14–15. (In Russian).
55. PVL Connecting Loop. Technical Manual. Peikko Group. 2019, 30 p.
56. Зенин С.А., Шарипов Р.Ш., Кудинов О.В. Исследование работы штепсельных стыков в крупнопанельных конструктивных системах зданий // Бетон и железобетон. 2021. № 5–6 (607–608). С. 60–66.
56. Zenin S.A., Sharipov R.Sh., Kudinov O.V. Research of plug connections in large-panel structural systems of buildings. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2021. No. 5–6 (607–608), pp. 60–66. (In Russian).
57. Provost-Smith D.J. Investigation of grouted dowel connection for precast concrete wall construction. Electronic Thesis and Dissertation Repository. 2016. 4298 https://ir.lib.uwo.ca/etd/4298 (Date of access 28.09.22).
58. Nehdy M., Elsayed M., Provost-Smith D. J. Investigation of grouted precast concrete wall connections at subfreezing conditions: Material of Conference “Resilient infrastructure”. London, GB. 2016, pp. 1–10. https://www.researchgate.net/publication/304115263_INVESTIGATION_OF_GROUTED_PRECAST_CONCRETE_WALL_CONNECTIONS_AT_SUBFREEZING_CONDITIONS#fullTextFileContent (Date of access 28.09.2022).
59. Румянцев Е.В., Байбурин А.Х., Соловьев В.Г., Ахмедьянов Р.М., Бессонов С.В. Технологические параметры качества самоуплотняющихся мелкозернистых бетонных смесей для зимнего бетонирования стыков // Строительные материалы. 2021. № 5. С. 46–14. DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
59. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
60. Румянцев Е.В., Байбурин А.Х., Соловьев В.Г., Ахмедьянов Р.М., Бессонов С.В. Динамика набора прочности самоуплотняющихся мелкозернистых бетонов при зимнем бетонировании стыков // Строительные материалы. 2021. № 10. С. 12–20. DOI: https://doi.org/10.31659/0585-430X-2021-796-10
60. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting fine-grained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
61. Румянцев Е.В., Видякин А.А., Байбурин А.Х. Температурный мониторинг монолитных стыков крупнопанельных зданий при зимнем бетонировании // Бетон и железобетон. 2020. № 1 (601). С. 42–48.
61. Rumyantsev E.V., Vidyakin A.A., Bayburin A.Kh. Temperature monitoring of monolithic joints of large-panel buildings during winter concreting. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2020. No. 1 (601), pp. 42–48. (In Russian).
62. Румянцев Е.В., Швецова В.А. Разработка системы контроля твердения стыков сборного железобетона при отрицательных температурах // Техника и технология силикатов. 2022. Т. 29. № 1. C. 4–15.
62. Rumyantsev E.V., Shvetsova V.A. Development of a system for monitoring the hardening of prefabricated reinforced concrete joints at negative temperatures. Tekhnika i tekhnologiya silikatov. 2022. Vol. 29. No. 1, pp. 4–15. (In Russian).

For citation: Rumyantsev E.V. The trends in prefabricated high­rise housing construction: world and domestic experience. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 13–27. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-13-27

Two-layer Factory-Made Exterior Panel for Low-Rise Housing Construction

Number of journal: 3-2023
Autors:

Nikolaev S.V.

DOI: https://doi.org/10.31659/0044-4472-2023-3-3-10
УДК: 711.643

 

AbstractAbout AuthorsReferences
The annual growth in the volume of individual housing construction (IHC) opens up new opportunities for using industrial methods of housing construction. The obvious source of volume growth is the production capacities of house-building plants and reinforced concrete structures factories, which today have been preserved, operate and have underutilized reserves. However, the products produced by these enterprises are mainly intended for the construction of multi-storey, apartment buildings. The use of these products for the construction of one-two storey houses requires scientific and practical rethinking. The same is required by the construction market, which is constantly expanding due to the appearance of new materials and products, including facade finishing materials. Among such effective finishing materials, the author refers to the use of thermal panels and planken – thin wooden fences, which have not yet been used in panel houses. The author gives an example of factory production of panels of external three-layer walls with subsequent fixing on the facade concrete layer of thermal panels. The inefficiency of this solution is obvious. As an alternative to this solution, the author proposes to produce at the factory two-layer panels of external walls with a bearing concrete layer, insulation and special embedded parts for attaching to them at the construction site various types of hinged facades, including thermal panels and planken. The design of a two-layer external panel of factory production is described in detail, design data, economic efficiency of two-layer panels are given. Evaluation of the construction of multi-storey buildings with the use of two-layer panels of factory-made exterior walls makes it possible to suggests that the use of such panels will create a new product that will find wide application in the practice of individual housing construction.
S.V. NIKOLAEV, Doctor of Sciences (Engineering), Honored Builder of the Russian Federation, Scientific Supervisor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

JSC “TSNIIEPzhilishcha” – Institute of Comprehensive design of residential and public buildings (JSC “TSNIIEPzhilishcha)(9, bldg. 3, Dmitrovskoye Highway, Moscow, 127434, Russian Federation)

1. Nikolaev S.V. Monolithic-panel low-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 3, pp. 8–15. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-3-8-15
2. Nikolaev S.V. Construction of panel-monolithic houses from factory-made house kits. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 10, pp. 10–16. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-10-10-16
3. Nikolaev S.V. Construction of low-rise housing from house sets of factory production. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 5, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-5-3-8
4. Shmelev S.E. Myths and truth about monolithic and precast housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 40–42. (In Russian).
5. Nikolaev S.V. Architectural and urban planning system of panel-frame housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 3, pp. 15–25. (In Russian).
6. Sokolov B.S., Zenin S.A. Analysis of the regulatory base for designing reinforced concrete structures. Stroitel’nye Materialy [Construction Materials]. 2018. No. 3, pp. 4–12. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-4-10
7. Malyavina E.G., Samarin O.D. Stroitel’naya teplofizika i mikroklimat zdanii [Construction thermophysics and microclimate of buildings]. Moscow: MISI–MGSU. 2018. 288 p.

For citation: Nikolaev S.V. Two-layer factory-made exterior panel for low-rise housing construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 3, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-3-3-10

Reliability of a Built-in Underground Structure under the Impact of an Air Shock Wave

Number of journal: 1-2-2023
Autors:

Mkrtychev O.V.,
Savenkov A.Yu.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-71-74
УДК: 69.035.4

 

AbstractAbout AuthorsReferences
Studies show that explosive impacts have a pronounced random character, therefore, it is possible to talk about the stability of buildings and structures to such impacts only with a certain degree of probability. An assessment of the reliability of the built-in underground structure was performed, taking into account the random nature of the initial impact of an air shock wave, as well as the random strength of materials. For this purpose, a deterministic solution of the problem of calculating a underground structure built-in in the lower floor of a multi-storey building when exposed to an air shock wave, taking into account the collapse of the overlying structures, is obtained. The solution of the deterministic problem was carried out with the help of the gas-dynamic approach using nonlinear dynamic methods, which make it possible to solve such problems in a more rigorous and complete formulation, in contrast to the equivalent static methods used in regulatory documents. In this case, mathematical models of soils were used, which make it possible to most accurately reproduce the dynamic behavior of dense and water-saturated soils, as well as nonlinear models of materials. Reliability assessment was carried out using the methods of the theory of reliability of building structures and probability theory. The results of the calculation showed that the developed technique makes it possible to design built-in underground structures with a set level of reliability.
O.V. MKRTYCHEV, Doctor of Sciences (Engineering),
A.Yu. SAVENKOV, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Rayzer V.D. Teoriya nadezhnosti v stroitel’nom proektirovanii [Reliability theory in building design]. Mosсow: ASV. 1998. 304 p. (In Russian).
2. Rayzer V.D. Teoriya nadegnosti [Reliability theory]. Mosсow: ASV. 2010. 384 p. (In Russian).
3. Mkrtychev O.V., Rayzer V.D. Teoriya nadezhnosti v proektirovanii stroitel’nykh konstruktsii [Reliability theory in the design of building structures]. Mosсow: ASV. 2016. 908 p. (In Russian).
4. Nevskaya E.E. Main Methods of the Blast Waves Parameters Assessment at Emergency Explosions. Principles of Designing Blast Resistant Buildings and Structures. Ingenernoe delo. 2017. No. 9, pp. 20–29. (In Russian). doi: 10.2400/0409-2961-2017-9-20-29
5. Mkrtychev O.V., Savenkov A.Yu. Gas-dynamic approach to the calculation of an underground structure for the impact of an air shock wave. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 8–14. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-8-14
6. Mkrtychev O.V. Savenkov A.Y. Reliability of building structures in case of an air blast wave. IOP Conf. Series: Materials Science and Engineering. 2020. 052054. (In Russian). doi: 10.1088/1757-899X/869/5/052054

For citation: Mkrtychev O.V., Savenkov A.Yu. Reliability of a built-in underground structure under the impact of an air shock wave. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 71–74. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-71-74

Mathematical Modeling of Changes in the Temperature of the Soil Environment in the Python Programming Language

Number of journal: 1-2-2023
Autors:

Sakharov I.I.,
Polunin V.M.,
Litvinov P.V.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-65-70
УДК: 551.34

 

AbstractAbout AuthorsReferences
A calculation module for predicting temperature changes in the soil base using numerical modeling with the help of finite elements is presented. A detailed algorithm for the implementation of the temperature problem is presented, indicating the accepted physical equations; accepted methods for generating local stiffness matrices and mass matrix; methods for generating local vectors of the right side; accepted method of solving the problem in time. The description of the used scientific software libraries in the python programming language for generating a finite element mesh for computational domains is given. Verification of the calculation results obtained by the authors is confirmed by the high convergence of the temperature values in the soil base, which were obtained in the Termoground calculation module.
I.I. SAKHAROV, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.M. POLUNIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.V. LITVINOV, Student, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

St. Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, St. Petersburg, 190005, Russian Federation)

1. Tsytovich N.A. Mekhanika merzlyh gruntov (obshchaya i prikladnaya) [Mechanics of frozen soils (general and applied)]. Moscow: Vysshaya shkola. 1973. 448 p.
2. Sakharov I.I. Modern approaches to the design of foundations and foundations for permafrost objects, taking into account the effects of global warming. Modern theoretical and practical issues of geotechnics: new materials, designs, technologies and calculation methods (GFAC 2021). Saint Petersburg. 2021. Vol. 1, pp. 9–10. (In Russian).
3. Andrianov P.I. Temperatura zamerzaniya gruntov [Soil freezing temperature]. Moscow: Publishing house of the Academy of Sciences of the USSR, 1936. 16 p.
4. Berezantsev V.G. Raschet osnovanij sooruzhenij. [Calculation of the foundations of structures]. Leningrad: Publishing house of literature on construction. 1970. 212 p.
5. Kronik Ya.A. Raschety temperaturnyh polej i napryazhenno-deformirovannogo sostoyaniya gruntovyh sooruzhenij metodom konechnyh elementov [Calculations of temperature fields and stress-strain state of soil structures by the finite element method]. Moscow: MISI. 1982. 102 p.
6. Segerlind L. Primenenie metoda konechnyh elementov [Application of the finite element method]. Moscow: Mir. 1979. 392 p.
7. Karlov V.D. Osnovaniya i fundamenty na sezonnopromerzayushchih puchinistyh gruntah [Bases and foundations on seasonally freezing heaving soils]. Saint Petersburg: Nestor-Istoriya 2007. 359 p.
8. Sakharov I.I. Physicomechanics of cryoprocesses in soils and its applications in assessing the deformations of buildings and structures. D-r. Diss. (Engineering). Saint Petersburg. 1995. (In Russian).
9. Mangushev R.A., Karlov V.D., Sakharov I.I. Mekhanika gruntov [Soil mechanics]. Moscow: ASV. 2011. 264 p.
10. Welli Yu.Ya., Dokuchaeva V.I., Fedorova N.F. Spravochnik po stroitel’stvu na vechnomerzlyh gruntah [Reference book on construction on permafrost soils]. Leningrad: Stroyizdat. 1977. 552 p.
11. Aramanovich I.G., Levin V.I. Uravnenie matematicheskoj fiziki [Equation of mathematical physics]. Moscow: Nauka. 1969. 288 p.
12. Krasnov M.L., Makarenko G.I., Kiselev A.I. Variacionnoe ischislenie [Variational calculus]. Moscow: Mir. 1973. 190 p.
13. Pekhovich A.I., ZHidkih V.M. Raschet teplovogo rezhima [Calculation of the thermal regime]. Leningrad: Energiya. 1976. 350 p.
14. Lukashevich A.A. Sovremennye chislennye metody stroitel’noj mekhaniki [Modern numerical methods of structural mechanics]. Khabarovsk: KhSTU. 2003. 135 p.
15. Pirumov U.G. Chislennye metody. [Numerical methods]. Moscow: MAI. 1998. 188 p.
16. Kudryavcev S.A., Saharov I.I., Paramonov V.N. Promerzanie i ottaivanie gruntov prakticheskie primery i konechnoelementnye raschety [Freezing and thawing of soils practical examples and finite element calculations]. St. Petersburg: Georeconstruction. 2014. 260 p.
17. Kudryavtsev S.A. Calculations of the process of freezing and thawing using the program «TERMOGROUND”. Urban reconstruction and geotechnical construction. 2004. Vol. 1. No. 8, pp. 83–97. (In Russian).
18. Gallager R. Metod konechnyh elementov osnovy [Fundamental Finite Element Method]. Moscow: Mir. 1984. 428 p.

For citation: Sakharov I.I., Polunin V.M., Litvinov P.V. Mathematical modeling of changes in the temperature of the soil environment in the Python programming language. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 65–70. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-65-70

Technology of Accelerated Screw and Bolt Connections of Reinforced Concrete Elements of Column-Crossbar Type

Number of journal: 1-2-2023
Autors:

Sychev S.A.,
Badin G.M.,
Al-Habeeb Ahmed A.,
Abass Agadeer A.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-61-64
УДК: 624.05

 

AbstractAbout AuthorsReferences
A rigid screw connection consisting of prefabricated reinforced concrete columns interconnected by a screw connection, as well as prefabricated crossbars containing embedded parts connected by screws, as well as prefabricated floor slabs containing embedded parts in their four corners is proposed. The use of such a unit leads to an increase in the quality of installation of prefabricated buildings and a reduction in construction time.
S.A. SYCHEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G.M. BADIN3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
AL-HABEEB Ahmed A.1, Postgraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
ABASS Agadeer А.1,2, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural Federal University named after the First President of Russia B.N. Yeltsin” (19, Mira Street, Yekaterinburg, Sverdlovsk oblast 620002, Russian Federation)
2 University of Diyala (Diyala city, 32001, Iraq)
3 Russian Academy of Architecture and Construction Sciences (19, Noviy Arbat Street, Moscow, 127025, Russian Federation)

1. Sychev S.A. Perspective high-tech building systems for prefabricated transformable multi-storey buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 36–40.
2. Oleinik P.P. Industrial’no-mobil’nye metody vozvedeniya predpriyatii, zdanii i sooruzhenii [Industrial-mobile methods of construction of enterprises, buildings and structures]. Moscow: ASV. 2021. 488 p.
3. Topchiy D.V., Kochurina E.O., Zalmanov A.A. Technology “Top and down”. Technologiya I organizatsia stroitelnogo proizvodstva. 2016. No. 1 (11), pp. 7–10.
4. Lapidus A.A., Vasneva D.A. Optimization of construction flows by reducing the time of concrete work. Technologiya I organizatsia stroitelnogo proizvodstva. 2016. No. 1 (11), pp. 3–6.
5. Sychev S.A., Bad’in G.M. Tekhnologii stroitel’stva i rekonstruktsii ehnergoehffektivnykh zdanii [Technologies of construction and reconstruction of energy-efficient buildings]. Saint Petersburg: BHV-Peterburg. 2017. 464 p.
6. Sychev S.A., Badin G.M., Abass Agadeer A., Al-Habeeb Ahmed A. Passive methods of mounting elements of volume-block housing construction in conditions of limited energy resources. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-27-32
7. Sychev S.A. Technological principles of accelerated housing construction, the prospect of automated and robotic assembly of buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 3, pp. 66–70. (In Russian).
8. Guan D., Jiang C., Guo Z., Ge H., Development and seismic behavior of precast concrete beam-to-column connections. Journal of Earthquake Engineering. 2016. No. 22, pp. 234–256.
9. Girgin S.C., Misir I.B., Kahraman S., Experimental cyclic behavior of precast hybrid beam-column connections with welded components. International Journal of Concrete Structures and Materials. 2017. No. 11 (2), pp. 229–245.

For citation: Sychev S.A., Badin G.M., Al-Habeeb Ahmed A., Abass Agadeer A. Technology of accelerated screw and bolt connections of reinforced concrete elements of column-crossbar type. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 61–64. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-61-64

Organizational and Technological Solutions for the Reconstruction of Residential Buildings in the Historical Center of St. Petersburg

Number of journal: 1-2-2023
Autors:

Chakhkiev I.M.,
Doronin V.U.,
Matiushkin D.N.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-54-60
УДК: 711.168

 

AbstractAbout AuthorsReferences
The uniqueness of the historical center of St. Petersburg lies in the spatial harmony of the city and its surroundings, where small towns and settlements alternate with undeveloped territories, agricultural and forest lands, as well as the water area. It is this historically formed integrity that has been under UNESCO protection since 1990. In this regard, the preservation of the old residential buildings of St. Petersburg is an important urban planning task of the city. One of the directions in solving this problem in modern conditions, due to the increase in moral and physical deterioration of the outdated housing stock, is its reconstruction. Modern reconstruction of buildings is a labor-intensive and complex segment of construction, as it requires considerable investment, takes quite a long time due to the implementation of a lot of technological operations and the need to coordinate actions with the relevant services. During the reconstruction of buildings, the external walls are usually kept unchanged or strengthened, if necessary, from the inside, without changing the appearance of the building, preserving its historical and cultural value, as well as architectural expressiveness. The paper presents the main stages of reconstruction of residential buildings, which are considered on a concrete example.
I.M. CHAKHKIEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.U. DORONIN, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.N. MATIUSHKIN, Master’s student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Golovina S.G. Architectural and structural features of the stages of development of the historical residential development of St. Petersburg of the XVIII – early XX centuries. Vestnik grazhdanskikh inzhenerov. 2019. No. 6 (77), pp. 36–43. (In Russian).
2. Perov V.A. The current state and content of the processes of repair of housing stock objects. Problemy sovremennoi ekonomiki. 2010. No. 3 (35), pp. 387–392. (In Russian).
3. Osipov Yu.L. Overhaul of apartment buildings in St. Petersburg: problems and development. Problemy sovremennoi ekonomiki. 2013. No. 3 (47), pp. 393–394. (In Russian).
4. Vedeneeva O.V. Improvement of the economic and organizational mechanism of reconstruction and capital repairs of the housing stock. Munitsipal’naya ekonomika. 2012. No. 4 (52), pp. 92–98. (In Russian).
5. Larina N.A. Economic problems of reconstruction and restoration of housing stock of various forms of ownership on the example of the historical center of St. Petersburg. Problemy sovremennoi ekonomiki. 2013. No. 3, pp. 336–339. (In Russian).
6. Buzyrev V.V. Renovation of residential buildings as an important factor in increasing the life cycle of housing stock in the region. Problemy sovremennoi ekonomiki. 2012. No. 4 (44), pp. 285–288. (In Russian).
7. Mukhaev A.I., Popova I.V., Dedichkina Yu.V. Analysis of the current state and prospects of housing construction development in the Russian Federation. Sovremennye problemy nauki i obrazovaniya. 2014. No. 3, p. 332. (In Russian).
8. Matveev E.P., Meshechek V.V. Sovremennye problemy nauki i obrazovaniya [Technical solutions for strengthening and thermal protection of structures of residential and public buildings]. Moscow: Staraya Basmannaya. 1998. 208 p.
9. Akulenkova I.V., Drozdov G.D., Malafeev O.A. Sovremennye problemy nauki i obrazovaniya [Problems of reconstruction of housing and communal services of the metropolis]. Saint Petersburg: SPbGUSE. 2007. 187 p.
10. Zolotozubov D.G. Bezgodov M.A. Rekonstruktsiya zdanii i sooruzhenii [Reconstruction of buildings and structures]. Perm: PNRPU. 2013. 161 p.
11. Shesterov E.A., Panin A.N. Features of the survey of the technical condition of building structures of buildings of historical development of St. Petersburg. Integration, partnership and innovation in construction science and education. Collection of materials of the international scientific conference. Moscow: MGSU. 2017, pp. 298–302. (In Russian).
12. Zahra T., Asad M., Tambu J. The influence of geometry on the compression characteristics of bonded brickwork. Structures. 2021. Vol. 32, pp. 1408–1419.
13. Wang J., Heath A., Walker P. Experimental investigation of the behavior of brickwork during shear, compression and bending. Construction and building materials. 2013. Vol. 48, pp. 448–456.

For citation: Chakhkiev I.M., Doronin V.U., Matiushkin D.N. Оrganizational and technological solutions for the reconstruction of residential buildings in the historical center of St. Petersburg. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 54–60. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-54-60

Investigation of LVL Crumpling Strength with a Cylindrical and Triangular Stamps Taking into Account Changes in Humidity

Number of journal: 1-2-2023
Autors:

Chernykh A.G.,
Khokhrin R.V.,
Danilov E.V.,
Koval P.S.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-49-53
УДК: 694.143

 

AbstractAbout AuthorsReferences
The work of the dowel joints with claw washers in the structures of glued veneer lumber has not been studied fully enough. To understand the stress-strain state of the node elements, it is necessary to consider the behavior of the connector components under load. The article considers studies of the behavior of LVL material when crumpled by cylindrical and triangular stamps from the action of short-term load, taking into account changes in humidity, stamp size and angle of force application to the fibers. The test procedure for determining the strength and stiffness parameters of the socket of the connectors in LVL is given. The bed coefficient and the tensile strength were experimentally obtained, and the expressions of multifactor regression were determined. It is noted that an increase in humidity and the angle of action of the load in relation to the fibers reduces the tensile strength and the bed coefficient. Increasing the size of the stamp reduces the strength and rigidity. An inversion was found in the results for a triangular stamp with the direction of forces along the fibers, leading to a situation where the bed coefficient and the tensile strength for a triangular stamp at an angle α= 33 degrees does not depend on their dimensions. The found dependencies can be used to calculate the first and second groups of limit states for dowel joints in LVL constructions with claw washers by substituting the obtained data into the calculation formulas.
A.G. CHERNYKH, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.V. KHOKHRIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.V. DANILOV, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
P.S. KOVAL, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Chernykh A.G., Danilov E.V., Koval P.S. Calculation of the stiffness of joints of structures made of LVL with claw washers. Izvestiya vuzov. Lesnoy Zhurnal. 2020. No. 4, pp. 157–167. (In Russian).DOI: 10.37482/0536-1036-2020-4-157-167
2. Danilov E.V. Investigation of the long-term strength of LVL when crushed by a cylindrical die. Vestnik grazhdanskikh inzhenerov. 2014. No. 4 (45), pp. 38–42. (In Russian).
3. Danilov E.V. Investigation of the short-term strength of LVL under triangular die collapse. Vestnik grazhdanskikh inzhenerov. 2014. No. 1 (42), pp. 28–33. (In Russian).
4. Kritsin A.V. Calculation of through wooden structures on metal toothed plates, taking into account elastic-viscous and plastic deformations. Diss. … Candidate of Sciences (Engineering). Nizhny Novgorod. 2004. 180 p.
5. Sheshukova N.V. Mikhailov B.K. Dlitel’naya prochnost’ i deformativnost’ derevyannykh konstruktsiy na nagel’nykh soyedineniyakh [Long-term strength and deformability of wooden structures on dowel joints]. St. Petersburg: SPbGASU. 2006. 169 p.
6. Vladimirova O.V., Popov E.V., Labudin B.V. Optimization of the shape of the claw washer from the condition of the maximum allowable shear. Security of the building stock in Russia. Problems and Solutions: Proceedings of International Academic Readings. Kursk, November 18, 2020, pp. 11–20. (In Russiaan).
7. Popov E.V., Ruslanova A.V., Sopilov V.V., Zhdralovich N. et al. Contact interaction of a claw washer with wood from limit shear. Izvestiya vuzov. Lesnoy Zhurnal. 2020. No. 4 (376), pp. 178–189. (In Russian). DOI 10.37482/0536-1036-2020-4-178-189
8. Chybiński Marcin, Polus Łukasz. Mechanical behaviour of aluminium-timber composite connections with screws and toothed plates. Materials. 2022. Vol. 15. Iss. 1. https://doi.org/10.3390/ma15010068
9. Telichenko V.I., Rimshin V.I., Karelskii A.V. et al. Strengthening technology of timber trusses by patch plates with toothed-plate connectors. Journal of Industrial Pollution Control. 2017. Vol. 33 (1), pp. 1034–1041.
10. Blaβ H.J., Ehlbeck J., Schlager M. Characteristic strength of tooth-plate connector joints. Holz als Roh-und Werkstoff. 1993. Vol. 51, pp. 395–399 https://doi.org/10.1007/BF02628236
11. Mettem C.J., Page A.V. Davis G. Validatory tests and proposed design formulae for the load-carrying capacity of toothed-plate connectored joints. Papers of the 26th.
12. Gorozhankin S.A., Shitov A.A., Savenkov N.V. Techniques for Approximation of Dependences of Several Variables in MS Excel and Mathcad. Informatika, telekommunikatsii i upravleniye. 2016. No. 3 (247). URL: https://cyberleninka.ru/article/n/metodiki-dlya-approksimatsii-zavisimostey-neskolkih-peremennyh-v-programmnoy-srede-ms-excel-i-mathcad
13. Glukhikh V.N., Chernykh A.G., Danilov E.V. Derevyannyye konstruktsii s primeneniyem kogtevykh shayb i uchetom nachal’nykh napryazheniy drevesiny: monografiya [Wooden structures using claw washers and taking into account the initial stresses of wood: monograph]. St. Petersburg: St. Petersburg State University of Architecture and Civil Engineering. 2018. 284 p.

For citation: Chernykh A.G., Khokhrin R.V., Danilov E.V., Koval P.S. Investigation of LVL crumpling strength with a cylindrical and triangular stamps taking into account changes in humidity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 49–53. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-49-53

Noise Pollution from Ventilation Systems in Residential Buildings

Number of journal: 1-2-2023
Autors:

Abramkina D.V.

DOI: https://doi.org/10.31659/0044-4472-2023-1-2-45-48
УДК: 699.84

 

AbstractAbout AuthorsReferences
The provision of calculated air exchange when using duct systems of natural ventilation and organizing cross-ventilation is a difficult to predict value, therefore, in multi-storey residential buildings, systems with mechanical stimulation are increasingly used every year. However, there are a number of problems associated with the need for maintenance and repair, as well as the generation of noise outside and inside the building. In practice, despite the existence of recommendations for limiting noise from engineering equipment, when designing and commissioning an object, proper control of acoustic characteristics is practically not carried out. The problem of noise pollution can limit the use of mechanical ventilation. As part of the study, noise generated by mechanical ventilation systems during the day and at night in the apartments of the last floor of a three-section residential building located in Moscow was measured. About a third of the surveyed apartments in the multi-storey residential building had excess noise levels during the day and at night. The main reasons for the formation of increased levels of sound pressure were poor-quality installation work of ventilation systems.
D.V. ABRAMKINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Навроцкая А.А., Васильев Ю.В. Влияние шума технологического оборудования жилых зданий на качество жизни и здоровье человека // FORCIPE. 2021. Т. 4. С. 223.
1. Navrotskaya A. A., Vasil’ev Yu. V. Influence of noise technological equipment noise in residential buildings on quality of life and human health. FORCIPE. 2021. Vol. 4, pр. 223. (In Russian)
2. Harvie-Clark J., Siddal M. Problems in residential design for ventilation and noise // Acoustics Bulletin. 2013. № 35 (1), pp. 74–87.
3. Hurtley C., Bengs D. Night noise guidelines for Europe. Copenhagen: WHO Regional Office for Europe. 2009. 184 p.
4. Torresin S., Albatici R., Aletta F., Babich F., Oberman T., Kang G. Acoustic design criteria in naturally ventilated residential buildings: new research perspectives by applying the indoor soundscape approach. Applied Sciences. 2019. Vol. 9 (24). No. 5401.
5. Кузнецова Е.Б. Санитарно-гигиенические требования к уровням шума в жилых зданиях и на территории жилой застройки. Существующая практика применения // Здоровье – основа человеческого потенциала: проблемы и пути их решения. 2018. Т. 3. № 2. С. 853–862.
5. Kuznetsova E.B. Sanitary and hygienic requirements for noise levels in residential buildings and residential areas. Current use. Zdorov’e – osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya. 2018. Vol. 13. No. 2, pp. 853–862. (In Russian).
6. Лазаренко Н.В., Веретина И.А., Дегтярёва Ю.В. Опыт проведения измерений физических факторов по жалобам населения в г. Москве. Материалы Всероссийской научно-практической конференции / Под ред. А.Ю. Поповой. М., 2017. С. 219–222.
6. Lazarenko N.V., Veretina I.A., Degtyareva Y.V. Experience of measuring physical factors on complaints of the population in Moscow. Materials of the Russian scientific and practical conference edited by A.Y. Popova. Moscow. 2017, pp. 219–222.
7. Harvie-Clark J., Conlan N., Wei W., Siddall M. How loud is too loud? Noise from domestic mechanical ventilation systems. International journal of ventilation. 2019. Vol. 18 (3), pp. 1–10. DOI: 10.1080/14733315.2019.1615217
8. Lan L., Sun Y., Wyon D.P., Wargocki P. Pilot study of the effects of ventilation and ventilation noise on sleep quality in the young and elderly. Indoor Air. 2021. Vol. 31 (6), pp. 2226–2238. DOI: 10.1111/ina.12861
9. Brown C., Gorgolewski M. Understanding the role of inhabitants in innovative mechanical ventilation strategies. Building Research & Information. 2015. Vol. 43 (2), pp. 210–221. DOI: 10.1080/09613218.2015.963350
10. Baborska-Narozny M., Stevenson F. Mechanical ventilation in housing: understanding in-use issues. Proceedings Institute of Civil Engineers – Engineering Sustainability. 2017. Vol. 170 (1), pp. 33–46. DOI: 10.1680/jensu.15.00053
11. Rasmussen B., Machimbarrena M. Integrating and harmonizing sound insulation aspects in sustainable urban housing constructions. COST Action TU0901, 2014. 94 p.
12. Mohamed A. F., El-Menchawy A., Bassioni H. A. An ecological residential buildings management case study; an existing Egyptian eco-house. Republic of Moldova: LAP LAMBERT Academic Publishing. 2019. 148 p.
13. Cisek E., Jaglarz A. Architectural education in the current of deep ecology and sustainability. Buildings. 2021. Vol. 11. No. 358.
14. Боломатов В.Н. Герметичность воздуховодов: проблемы и решения // АВОК. 2017. № 6. С. 38–47.
14. Bolomatov V.N. Air tightness: problems and solutions. AVOK. 2017. No. 6, pp. 38–47. (In Russian).

For citation: Abramkina D.V. Noise pollution from ventilation systems in residential buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 45–48. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-1-2-45-48

https://www.traditionrolex.com/11