Личный кабинет

The use of Thermography to Determine the Boundary Conditions of Heat Exchange on The Inner Surfaces of Translucent Enclosing Structures

Number of journal: 12-2023
Autors:

Konstantinov A.P.,
Aksenov I.S.,
Elohov A.E.

DOI: https://doi.org/10.31659/0044-4472-2023-12-18-21
УДК: 692.82

 

AbstractAbout AuthorsReferences
The paper presents an approach to determining the boundary conditions of heat transfer (heat transfer coefficients) on the inner surfaces of translucent enclosing structures using thermal imaging data. To implement this approach, it is necessary to use additional equipment in the form of sheets of paper. A sheet of paper is installed close to and perpendicular to the investigated surface of the structure. At the same time, the profile of the sheet of paper exactly repeats the geometry of the surface under study. Based on the results of thermal imaging, thermograms and temperature graphs are constructed on characteristic areas of the inner surface of the translucent enclosing structure. They are used to determine the thickness of the boundary layer of air adjacent to the inner surface of the translucent enclosing structure. These data are used later to calculate the heat transfer coefficient at the inner surface of these structures. The presented approach was implemented in the course of field studies of heat transfer conditions at the internal surfaces of four PVC windows.
А.P. KONSTANTINOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. AKSENOV1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.E. ELOHOV2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 LLC «Institute of Passive House» (2-1-4-X11-407, Kirpichnye vyemki steet, Moscow, 117405, Russian Federation)

1. Зимин А.Н., Бочков И.В., Крышов С.И., Умнякова Н.П. Сопротивление теплопередаче и температура на внутренних поверхностях светопрозрачных ограждающих конструкций жилых зданий г. Москвы // Жилищное строительство. 2019. № 6. С. 24–29. DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
1. Zimin A.N., Bochkov I.V., Kryshov S.I., Umnyakova N.P. Heat transfer resistance and temperature on internal surfaces of translucent enclosing structures of residential buildings of Moscow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 24–29. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
2. Константинов А.П., Крутов А.А., Тихомиров А.М. Оценка теплозащитных характеристик оконных блоков из ПВХ профилей в зимний период эксплуатации // Строительные материалы. 2019. № 8. С. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
2. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
3. Умнякова Н.П., Бутовский И.Н., Верховский А.А., Чеботарев А.Г. Требования к теплозащите наружных ограждающих конструкций высотных зданий // Жилищное строительство. 2016. № 12. С. 7–11.
3. Umnyakova N.P., Butovsky I.N., Verkhovsky A.A., Chebotarev A.G. Requirements to heat protection of external enclosing structures of high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 12, pp. 7–11. (In Russian).
4. Савин В.К. Строительная физика: энергоперенос, энергоэффективность, энергосбережение. М.: Лазурь, 2005. 432 с.
4. Savin V.K. Stroitel’naya fizika: energoperenos, energoeffektivnost’, energosberezhenie [Construction physics: energy transfer, energy efficiency, energy saving]. Moscow: Lazur’. 2005. 432 p.
5. Bockh P. Heat Transfer. Basics and Practice. London – New York: Springer Heidelberg Dordrecht. 2012. 291 с.
6. Mokheimer E.M.A. Heat transfer from extended surfaces subject to variable heat transfer coefficient. Heat and Mass Transfer. 2003. Vol. 39, pp. 131–138. https://doi.org/10.1007/s00231-002-0338-3
7. Elmahdy A.H., Frank T. Heat transfer at the edge of sealed insulating glass units: Comparison of hot box measurements with finite-difference modeling. ASHRAE Transactions. 1993. No. 99, pp. 915–922.
8. Curcija D. Effect of realistic boundary conditions in computer modeling of condensation resistanse for fenestration systems. Thermal Envelopes. 1998. No. 7, pp. 405–414.
9. McGowan A.G. Computer simulation of window condensation potential. Thermal Envelopes. 1998. No. 7, pp. 229–235.
10. Wright J.L. A Simplified numerical method for assessing the condensation resistance of windows. ASHRAE Transactions. 1998. No. 1. Pt. 1, pp. 1–8.
11. Yazdanian M. Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Transactions. 1994. № 100.
12. Дроздов В.А. Теплообмен в светопрозрачных ограждающих конструкциях. М.: Стройиздат, 1979. 307 с.
12. Drozdov V.A. Teploobmen v svetoprozrachnyh ograzhdayushchih konstrukciyah [Heat exchange in translucent enclosing structures]. Moscow: Stroyizdat, 1979. 307 p.
13. Умняков П.Н. Тепловой и экологический комфорт: проектирование процессов оказания услуг. М.: Форум, 2009. 447 с.
13. Umnjakov P.N. Teplovoj i jekologicheskij komfort: proektirovanie processov okazanija uslug [Thermal and environmental comfort: designing service delivery processes]. Moscow: Forum, 2009. 447 p.
14. Крутов А.А., Константинов А.П. Граничные условия для расчета температурных полей узлов примыкания окон в зоне подоконника // Жилищное строительство. 2022. № 11. С. 11–18. DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18
14. Krutov A.A., Konstantinov A.P. Boundary conditions for calculating temperature fields of window junction nodes in the window sill area. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18
15. Tywoniak J, Stanek K., Kny M, Adamovský D. Studies on internal surface heat transfer in the window area. E3S Web of Conferences. 2020. 172, 24007. https://doi.org/10.1051/e3sconf/202017224007
16. Hua Ge. Study on overall thermal performance of metal curtain walls. Hua Ge – Concordia University, Monreal. 2002. 326 p.

For citation: Konstantinov A.P., Aksenov I.S., Elohov A.E. The use of thermography to determine the boundary conditions of heat exchange on the inner surfaces of translucent enclosing structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 18–21. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-18-21

Sound Insulation of Single-Layer Glazing, Single- and Double-Glazed Windows

Number of journal: 12-2023
Autors:

Ovsyannikov S.N.,
Samokhvalov A.S.

DOI: https://doi.org/10.31659/0044-4472-2023-12-12-17
УДК: 699.844.1

 

AbstractAbout AuthorsReferences
The analysis of known analytical solutions to the problem of calculating transmission the sound insulation of one- two- and three-layer glazing in comparison with the results of laboratory measurements is presented. The wave theory of sound transmission through single-layer and multi-layer enclosing structures with air gaps is used. Based on calculations of sound insulation of single-layer glazing, it is shown that the theory underlying the methodology of GOST R EN 12354-1–2012 “Acoustics of buildings. Methods for calculating the acoustic characteristics of buildings based on the characteristics of their elements. Part 1. Sound insulation of air noise between rooms”, most adequately takes into account the processes of non-resonant and resonant sound transmission. Its use in the formulation of models of sound transmission through double and triple glazing, taking into account internal losses and the influence of resonant processes, made it possible to obtain analytical solutions to the problem of sound insulation of single-chamber and double-chamber double-glazed windows, which showed good convergence with the experimental results. The proposed method for calculating sound insulation through single- and double-chamber double-glazed windows can be used in engineering calculations after additional studies of internal losses in multilayer glazing, as well as additional measurements of a number of “standard” types of glazing to verify the methodology.
S.N. OVSYANNIKOV1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SAMOKHVALOV1,2, Leading Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tomsk State University of Architecture and Civil Engineering (2, Solyanaya Square, Tomsk, 634003, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Tadeu A.J.B., Mateus D.M.R. Sound transmission through single, double and triple glazing. Experimental evaluation. Applied Acoustics. 2001. Vol. 62, pp. 307–325. https://doi.org/10.1016/S0003-682X(00)00032-3
2. Xin F.X., Lu T.J. Analytical modeling of sound transmission through clamped triple-panel partition separated by enclosed air cavities. European Journal of Mechanics A/Solids. 2011. Vol. 30, pp. 770–782. https://doi.org/10.1016/j.euromechsol.2011.04.013
3. Kurra S. Comparison of the models predicting sound insulation values of multilayered building elements. Applied Acoustics. 2012. Vol. 73, Iss. 6–7, pp. 575–589. https://doi.org/10.1016/j.apacoust.2011.11.008
4. Овсянников С.Н., Самохвалов А.С. Окна в раздельных переплетах с высокой теплозвукоизоляцией // Строительные материалы. 2012. № 6. C. 42–43.
4. Ovsyannikov S.N., Samokhvalov A.S. Windows in separate bind-ings with high heat and sound insulation. Stroitel’nye Materialy [Construction Materials]. 2012. No. 6, pp. 42–43. (In Russian).
5. Овсянников С.Н., Самохвалов А.С., Лелюга О.В., Большанина Т.С. Расчеты звукоизоляции одно-, двух- и трехслойных светопрозрачных конструкций // Жилищное строительство. 2022. № 11. С. 29–35. DOI: https://doi.org/10.31659/0044-4472-2022-11-29-35
5. Ovsyannikov S.N., Samokhvalov A.S., Lelyuga O.V., Bolshanina T.S. Calculations of sound insulation of one-two- and three-layer translucent structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 29–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-29-35
6. Винокур Р.Ю. Об эффекте повышения звукоизоляции легких перегородок на низких частотах // Акустический журнал. 1983. Т. 29. № 3.
6. Vinokur R.Yu. On the effect of increasing the sound insulation of light partitions at low frequencies. Akusticheskii zhurnal. 1983. Vol. 29. No. 3. (In Russian).
7. Винокур Р.Ю. Расчет звукоизоляции окон жилых и общественных зданий: Дис. … канд. техн. наук. М., 1983. 157 с.
7. Vinokur R.Yu. Calculation of sound insulation of windows of residential and public buildings. Cand. Diss. (Engineering). 1983. Moscow, 157 p. (In Russian).
8. Винокур Р.Ю., Лалаев Э.М. Теоретические и экспериментальные исследования звукоизоляционных стеклопакетов. В кн.: Борьба с шумом и звуковой вибрацией. М.: МДНТП, 1982. С. 62–67.
8. Vinokur R.Yu., Lalaev E.M. Teoreticheskie i eksperimental’nye issledovaniya zvukoizolyatsionnykh steklopaketov. V kn.: Bor’ba s shumom i zvukovoi vibratsiei [Theoretical and experimental studies of soundproof double-glazed windows. In the book: Struggle against noise and sound vibration]. Moscow: MDNTP. 1982, pp. 62–67.

For citation: Ovsyannikov S.N., Samokhvalov A.S. Sound insulation of single-layer glazing, single- and double-glazed windows. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 12–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-12-17

Design of FTS for High-Rise Buildings

Number of journal: 12-2023
Autors:

Gutora T.V.,
Verkhovsky A.A.

DOI: https://doi.org/10.31659/0044-4472-2023-12-8-11
УДК: 692.82

 

AbstractAbout AuthorsReferences
The problems arising in the design of facade translucent structures (FTS) for high-rise buildings are considered. The main problem in the design is the correct choice of source data for setting external and internal boundary conditions. An incorrect or erroneous choice of these parameters can have a significant impact on the calculation model and the results obtained for evaluating the thermal characteristics of the structure by the calculation method. As a result of the analysis conducted, the basic principles of preparing a calculation model and evaluating the thermal characteristics of the FTS for high-rise buildings were determined.
T.V. GUTORA1, Head of the Project Bureau Group (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. VERKHOVSKY2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 JSC “SCHUЕСO International Moscow” (8, Razina Street, Solnechnogorsk, Moscow Region. 141504, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Eldyshev Yu.A., Sesyunin S.G. The influence of the heat transfer process at the outer surface of the wall on the temperature of the inner surface of the window block. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2007. No. 8, pp. 25–27. (In Russian).
2. Mayorov V.A. Heat transfer through double–glazed windows. Svetoprozrachnye konstruktsii. 2015. No. 1, pp. 22–31. (In Russian).
3. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
4. Melnikova I., Boriskina I. Modern translucent structures in multistory residential buildings. IOP Conference Series: Materials Science and Engineering. 2018. 022021. DOI: 10.1088/1757-899X/365/2/022021
5. Konstantinov A.P., Okulov A.Y. Standardization of technical and operational characteristics of window structures. Current situation and development rospects. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 11, pp. 3–9. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-11-3-9
6. Stetsky S.V., Larionova K.O. Assessment of the insolation duration for the facades of buildings and adjacent territories under certain parameters of their development. Light and Engineering. 2021. Vol. 29. No. 5 (1), pp. 28–34. DOI: 10.33383/2021-069
7. Krutov A.A., Konstantinov A.P. The required resistance to heat transfer of translucent enclosing structures based on the comfortable conditions provision. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 11, pp. 14–20. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-11-14-20
8. Banionis К., Kuzmina J., Burlingis A., Ramanauskas J., Pauktys V. The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries. Energies. 2021. No. 14 (6). 169. DOI: https://doi.org/10.3390/en14061694
9. Verkhovsky A.A., Konstantinov A.P., Smirnov V.A. Standardization and requirements of normative documentation for curtain walls in the Russian Federation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 35–40. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-35-40

For citation: Gutora T.V., Verkhovsky A.A. Design of FTS for high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 8–11. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-8-11

Features of the Operation of Anchor Plates for Fixing Windows under the Action of Wind Loads

Number of journal: 12-2023
Autors:

Konstantinov A.P.,
Aksenov I.S.

DOI: https://doi.org/10.31659/0044-4472-2023-12-3-7
УДК: 692.82

 

AbstractAbout AuthorsReferences
Numerical and laboratory studies have been carried out to study the static operation of anchor plates under the action of wind loads. Numerical studies of the operation of a standard anchor plate under the action of a compressive load acting perpendicular to the plane of the window have shown that its carrier is several times less than the force that occurs at the attachment points of window blocks when peak wind loads are applied to them. At the same time, the existing experience in the operation of window blocks shows that anchor plates in the vast majority of cases retain their bearing capacity throughout the entire working life of the window block. This indicates that the simplified design scheme of the anchor plate used in practice does not fully reflect its actual operation as part of the window structure. This statement was verified during laboratory tests of a window block with typical design fixed with anchor plates to a frame that simulates a window opening. It is established that the static operation of the anchor plate is significantly influenced by both the fastening of the window frame with mounting foam and the limitation of anchor plates deformations by window slopes. The issue of calculating anchor plates for the effect of wind loads should be considered by the professional community in order to develop both common approaches to the calculation of such fasteners and the fundamental possibility of their use for windows installation, especially in unique buildings.
А.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. AKSENOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 1. Winter transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. 1–2, pp. 6–9. (In Russian).
2. Kalabin V.A. Assessment of PVC profile thermal deformation. Part 2. Summer transverse deformations. Svetoprozrachnye konstrukcii. 2013. No. 3, pp. 12–15. (In Russian).
3. Kalabin V.A. Assessment of PVC profile thermal deformation. Рart 3. The intensity of direct solar radiation. Svetoprozrachnye konstrukcii. 2013. No. 4, pp. 34–38. (In Russian).
4. Aksenov I.S., Konstantinov A.P. An analytical method for calculating the stress-strain state of PVC window profiles under thermal loading. Vestnik MSUCE. 2021.Vol. 16. No. 11, pp. 1437–1451. (In Russian). DOI: 10.22227/1997-0935.2021.11.1437-1451
5. Aksenov I.S. and Konstantinov A.P. Temperature deformations of PVC window profiles with reinforcement. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18, No. 2, pp. 98–111. DOI: 10.22337/2587-9618-2022-18-2-98-111
6. Konstantinov A., Lambias Ratnayake M. Calculation of PVC windows for wind loads in high-rise buildings. E3S Web of Conferences. 2018. Vol. 33. 02025. https://doi.org/10.1051/e3sconf/20183302025
7. Galyamichev A.V. Wind load and its action on facade structures. Stroitel’stvo unikal’nyh zdanij i sooruzhenij. 2017. No. 9 (60), pp. 44–57. (In Russian). DOI: 10.18720/CUBS.60.4
8. Prevat D.O. Wind load design and performance testing of exterior walls: Current standards and future considerations. Performance of exterior building walls. ed. P. Johnson (West Conshohocken, PA: ASTM International, 2003), pp. 17–41. DOI: 10.1520/stp10925s
9. Melnikova I., Boriskina I. Modern translucent structures in multistory residential buildings. IOP Conference Series: Materials Science and Engineering. 2018. 022021. DOI: 10.1088/1757-899X/365/2/022021
10. Konstantinov A.P., Semenov V.S. Strength and deformation characteristics of modern PU-foams economy class. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 28–32. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-28-32
11. Larin O.A., Kashurkin A.Yu., Mitrofanova N.V., Fedchenko E.V. Investigation of the resistance to operational impacts of sets for structural glazing of facades. Stroitel’nye Materialy [Construction Materials]. 2022. No. 7, pp. 57–62. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-804-7-57-62

For citation: Konstantinov A.P., Aksenov I.S. Features of the operation of anchor plates for fixing windows under the action of wind loads. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-3-7

The Destruction of Settlements in Countries During Earthquakes Will Be Repeated

Number of journal: 10-2023
Autors:

Maslyaev A.V.

DOI: https://doi.org/10.31659/0044-4472-2023-10-83-89
УДК: 699. 841

 

AbstractAbout AuthorsReferences
The destruction of several settlements at the same time during earthquakes in Turkey in February 2023 only due to the lack of sufficient strength of buildings and structures indicates that the process of destruction of settlements during earthquakes in different countries will still be repeated periodically. All this is only because in all recent such destructions during earthquakes in different countries, one main reason can be seen in them is that the regulatory construction documents of these countries provide for the calculation of buildings and structures only for significantly underestimated values of earthquake intensities. So, for example, in SP 14. 133302018 (Russia) even for calculations of the most massive residential and public buildings of settlements, only the minimum values of earthquake intensities are used. It is only for this reason that during the recent earthquakes in Armenia (1988), in Russia (1995, Sakhalin, Neftegorsk), in Turkey (2023), catastrophic destruction of settlements occurred with the death of many thousands of people. Moreover, in the joint venture SP 14.13330.2018 in the calculations of buildings and structures, there is even no accounting for the impact of repeated strong shocks (earthquakes), without which, as a rule, a strong earthquake does not occur. At the same time, numerous seismic devices are also missing in the territories of Russian settlements, which does not allow specialists to determine more accurate parameters of seismic impacts during an earthquake on construction sites.
A.V. MASLYAEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Seismic Laboratory (27, bldg. A, 51, Zemlyachki Street, 400117, Volgograd, Russian Federation)

1. Maslyaev A.V. Construction system of Russia does not protect the lifes and health of people in settlements during the earthquake. Zhilishchnoe Stroitelstvo [Housing Construction]. 2018. No. 9, pp. 60–63. (In Russian).
2. Maslyaev A.V. Russia settlements are not protected against the impact of natural hazards. Zhilishchnoe Stroitelstvo [Housing Construction]. 2019. No. 5, pp. 36–42. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-5-36-42
3. Steinberg V.V. Ground vibrations during earthquakes. Sources and impact of destructive seismic vibration. Engineering questions Neural seismology. Moscow: ANSSSR. inst. of Physics of the Earth O.Y. Schmidt. 1990. Iss. 31, pp. 47–67.
4. Aleshin A.S. Sejsmicheskoe mikrorajonirovanie osobo otvetstvennyh ob’ektov [Seismic microdistricting of especially responsible objects]. Moscow: Svetoch Plus. 2010. 304 p.
5. Maslyaev A.V. Author’s paradigm of the Russia construction system. Zhilishchnoe Stroitelstvo [Housing Construction]. 2020. No. 1–2, pp. 65–71. (In Russian). DOI: https:/doi.org/10.316590044-4472-2020-1-2-65-71
6. Maslyaev A.V. Need to the establish regional research centers to protest construction objects from the effects of natural hazards. Zhilishchnoe Stroitelstvo [Housing Construction]. 2020. No. 4–5, pp. 56–63. (In Russian). DOI: https:/doi.org/10.316590044-4472-2020-4-5-56-63
7. Maslyaev A.V. Priority tasks of construction science of Russia. Zhilishchnoe Stroitelstvo [Housing Construction]. 2023. No. 5, pp. 29–34. (In Russian). DOI: https:/doi.org/10. 316590044-4472-2023-5-29-34
8. Ginzburg A.V., Maslyaev A.V. Protection of localities in hazardous natural phenomena is the main purpose of the Russian construction system. Zhilishchnoe Stroitelstvo [Housing Construction]. 2021. No. 5, pp. 29–34. (In Russian). DOI: https:/doi.org/10.316590044-4472-2021-12-35-44
9. Khromovskikh V.S., Solonenko V.P., Shchukin Yu.K. Sovremennaja dinamika litosfery kontinentov. Metody izuchenija [Modern dynamics of the lithosphere of continents. Methods of studying]. Moscow: Nedra, 1989. 278 p.
10. Koff G.L., Ryumina E.V. Seismicheskii risk (vidy, otsenka, upravlenie) [Seismic risk (types, assessment, management)]. Moscow: Poltex. 2003. 108 p.
11. Aptikaev F.F. Instrumentalnaya shkala seismicheskoy aktivnosti [Instrumental scale of seismic intensity]. Moscow: Nauka. Obrazovanie. 2012. 176 p.
12. Maslyaev A.V. The need to recognize the settlements of Russian as objects of capital construction. Zhilishchnoe Stroitelstvo [Housing Construction]. 2022. No. 8, pp. 28–37. (In Russian). DOI: https:/doi.org/10.316590044-4472-2022-8-28-37
13. Korchinsky I.L., Borodin L.A., Grossman B.A. Seysmostoykoe stroitelstvo zdaniy [Earthquake-resistant construction of buildings]. Moscow: Vyshaya shkola. 1971. 320 p.
14. Polyakov S.V. Seysmostoykiye konstruktsii zdaniy [Earthquake-resistant structures of buildings]. Moscow: Vyshaya shkola. 1969. 336 p.
15. Chernykh E.N. Seasonal variations of dissipative characteristics of buildings. Seismostoykoe stroitelstvo. Bezopasnost’ sooruzhenii. 2007. No. 6, pp. 19–21. (In Russian).
16. Aleshin A.S., Kapustyan N.K., Aptikaev F.F., Erteleva O.O. Response about project SNiP “Building in seismic paradise-onah”. Seismostoikoe stroitelstvo, Bezopasnost’ sooruzhenii. 2008. No. 2, pp. 26–27. (In Russian).
17. Maslyaev A.V. Core criteria of seismoprotection of buildings and constructions at earthletshake. Zhilishchnoe Stroitelstvo [Housing Construction] 2008. No. 12, pp. 24–26. (In Russian).
18. Maslyaev A.V. Seismic stability of buildings taking into account repeated strong pushes at earthquake. Promyshlennoe i grazhdanskoe stroitelstvo. 2008. No. 3, pp. 45–47. (In Russian).
19. Maslyaev A.V. The problem of seismic hazard for russian settlements. Zhilishchnoe Stroitelstvo [Housing Construction]. 2023. No. 1–2, pp. 21–27. (In Russian). DOI: https:/doi.org/10.316590044-4472-2023-1-2-21-27
20. Ulomov V.I., Shumilina L.S. The Complete set of cards of the general seismic division into districts of territory of Russian Federation OSR-97. Scale 1: 8000000. An explanatory note and the list of cities and the settlemtnts located in seismodangerous areas. Moscow: Incorporated institute of physics of the Earth of O.Yu. Schmidt. 1999.
21. Piruzyan S.A., Kronenberg S.B. The influence of multi-focal earthquakes on seicosmic motion. Voprosy engenernoy seismologii. 2010. Vol. 37. No. 1, pp. 16–39. (In Russian).

For citation: Maslyaev A.V. The destruction of settlements in countries during earthquakes will be repeated. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 83–89. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-83-89

Determination of Frost Resistance of Building Materials by the Method of One-Sided Freezing

Number of journal: 10-2023
Autors:

Bessonov I.V.,
Zaharov V. A.,
Pavlova E. A.,
Gorbunova E. A.,
Govryakov I.S.

DOI: https://doi.org/10.31659/0044-4472-2023-10-77-82
УДК: 693.97

 

AbstractAbout AuthorsReferences
Currently, there are several methods for determining the frost resistance of building materials: the basic method, which consists in periodic freezing in air and with complete immersion of samples in water during thawing; accelerated methods by thawing in salts and by deep freezing. In the standards for cellular autoclave hardening units and polystyrene concrete, a special method of determination of frost resistance is described. Cycles according to this method consist of periodic freezing in air samples with mass humidity (35±2)% and thawing in air with relative humidity (95±2)%. GOST 7025–91 “Brick and ceramic and silicate stones. Methods for determining water absorption, density and control of frost resistance, in addition to the volumetric freezing method, prescribes a one-sided freezing method for ceramic and silicate bricks. The use of the one-sided freezing method, which is close to operational conditions, can be useful when assessing the resistance of materials and products used in the outer layers of the wall, particularly in facing ceramic bricks, facade systems and others. Research Institute of Building Physics has carried out research to assess the frost resistance of wall fragments from cellular concrete and polystyrene concrete blocks by the method of unilaterally freezing at the HDU-0.2 refrigeration plant. It has been established that the adhesion strength of blocks with plaster mortar, the strength of tearing of chemical anchors should be attributed as normalized parameters of frost resistance of wall masonry by unilateral freezing. It is necessary to carry out work aimed at systematization of determining and adopting uniform methods designating brands for frost resistance for all building materials used in outdoor enclosing structures, with subsequent introduction into existing regulations.
I.V. BESSONOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.A. ZAHAROV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E. A. PAVLOVA2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.A. GORBUNOVA1,3, Engineer, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.S. GOVRYAKOV1,3, Engineer, Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Central Research Institute of Building Constructions named after A.V. Kucherenko (TSNIISK named after A.V. Kucherenko) (6, 2-nd Institutskaya Street, Moscow, 109428, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Rakhimov R.Z. Ceramic and silicate brick in construction. Stroitel’nye Materialy [Construction Materials]. 2009. No. 6, pp. 24–27. (In Russian).
2. Francisco M. Fernandes 1-Clay bricks In Woodhead Publishing Series in Civil and Structural Engineering. Long-term Performance and Durability of Masonry Structures. Woodhead Publishing. 2019, pp. 3–19.
3. Dehghan S.M., Najafgholipour M.A., Baneshi V., Rowshanzamir M. Mechanical and bond properties of solid clay brick masonry with different sand grading. Construction and Building Materials. 2018. Vol. 174, pp. 1–10.
4. Stryszewska T., Kan´ka S. Characterization of factors determining the durability of brick masonry. Brick and block masonry – from historical to sustainable masonry. 2020. No. 1. 6 p.
5. Shamanov V.A. Causes of separation of the outer layer of the front brick. Ingenernyi vestnik Dona. 2018. No. 1 (48), pp. 28–35. (In Russian).
6. Kropyvnytska T., Semeniv R., Kotiv R., Novytskyi Yu. Effects of Nano-liquids on the Durability of Brick Constructions for External Walls. Lecture Notes in Civil Engineering. 2020. Vol. 100, pp. 237–244.
7. Ahmed Abdulhadi, Mohamed Mussa, Yasir Kadhim The clay rocks properties for the production of the ceramic bricks. Magazine of Civil Engineering. 2022. Vol. 111. No. 3.
8. Kotlyar V.D., Nebezhko N.I., Terekhina Yu.V., Kotlyar A.V. On the issue of chemical corrosion and durability of brick masonry. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 78–84. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-78-84
9. Bessonov I.V., Zhukov A.D., Bazhenova S.I., Konyukhov M.A. Frost resistance of the walls of buildings made of light concrete. Stroitel’nye Materialy [Construction Materials]. 2022. No. 11, pp. 4–9. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-808-11-4-9
10. Bessonov I.V, Bulgakov B.I., Lankan A.V.,Govryakov I.S., Gorbunova E.A. Reasons for the destruction of the front brick. Stroitel’stvo i rekonstruktsiia. 2023. No. 1 (105), pp. 114–122. (In Russian). DOI: 10.33979/2073-7416-2023-105-1-114-122
11. Krygina A.M., Maltsev P.V., Kartamyshev N.V.,Ilyinov A.G. On the durability of the stone masonry. Vestnik MGSU. 2011. No. 3, pp. 185–188. (In Russian).

For citation: Bessonov I.V., Zaharov V. A., Pavlova E. A., Gorbunova E. A., Govryakov I.S. Determination of frost resistanceof building materials by the method of one-sided freezing. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 77–82. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-77-82

Efficiency of Operation of Wall Valves for Supply Forced Ventilation with Air Purification in Multi-Apartment Residential Buildings

Number of journal: 10-2023
Autors:

Litvinova N.A.,
Azarov V.N.

DOI: https://doi.org/10.31659/0044-4472-2023-10-70-76
УДК: 697.921.45

 

AbstractAbout AuthorsReferences
The results of studies of the efficiency of the wall valves of supply forced ventilation with air purification when implemented in multi-storey construction of residential buildings are presented. As sorption filters become polluted, the aerodynamic drag coefficient increases from 30 days to 90–120 days, by 1.3 times, the pressure difference is more than 2 Pa for 90–120 days (3–4 months). Depending on the degree of pollution of the supply air, it is necessary to replace sorbents at different intensities of highways located near buildings: over 2000 auth./h – after 30 days, up to 1000 auth./h – after 56–60 days; over 500 auth./h – 90 days upwind, 120 days downwind. The average service life of sorbents for the windward side of the facade of buildings is 90 days (3 months), from the leeward side – after 120 days (4 months). The temperature fields of the surfaces of enclosing structures are constructed during the operation of supply ventilation valves with air purification for 1 hour and with the valves closed. When regulating the supply air flow rate from 55–120 m3/h using the supply ventilation valve control unit with air purification in different periods of the year, the heat loss for heating the supply air with heating radiators is reduced by 2.5–3 times.
N.A. LITVINOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.N. AZAROV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tyumen Industrial University (38, Volodarsky Street, Tyumen, 625005, Russian Federation)
2 Volgograd State Technical University (1, Akademicheskaya Street, Volgograd, 400005, Russian Federation)

1. Герман Е.А., Кузьмин А.Г., Шашев А.В. Анализ эффективности приточных клапанов системы вентиляции в условиях эксплуатации на многоквартирном жилом доме // СОК. 2019. № 2. С. 52–55.
1. Herman E.A., Kuzmin A.G., Shashev A.V. Analysis of the efficiency of supply valves of the ventilation system under operating conditions in an apartment building. SOC. 2019. No. 2, pp. 52–55. (In Russian).
2. Logachev I.N., Popov E.N., Logachev K.I., Averkova O.A. Refining the method for determining the flow rate of air entrained by freely falling polydisperse loose material. Powder Technology. 2020. Т. 373, pp. 323–335. DOI: 10.1016/j.powtec.2020.06.055
3. Shaptala V.V., Logachev K.I., Averkova O.A., Krutikova D.N. Modeling of convective vapor-air flows near onboard suction from open-surface reservoirs. Refractories and Industrial Ceramics. 2020. No. 6, pp. 636–641. DOI: 10.1007/s11148-020-00420-4
4. Averkova O.A., Goltsov A.B., Logachev K.I., Minko A.V. Reduction of dust extraction from an aspiration hood via mechanical shielding. Refractories and Industrial Ceramics. 2020. Vol. 61. No. 2, pp. 228–233. DOI: 10.1007/s11148-020-00462-8
5. Ветрова Н.М., Вереха Т.В., Меннанов Э.Э., Судьева Д.В. Экологическая безопасность урбанизированных рекреационных территорий в зоне влияния объектов транспортного строительства // Экономика строительства и природопользования. 2022. № 1–2 (82–83). С. 145–151.
5. Vetrova N.M., Verekha T.V., Mennanov E.E., Sudyeva D.V. Ecological safety of urbanized recreational territories in the zone of influence of transport construction objects. Ekonomika stroitel’stva i prirodopol’zovaniya. 2022. No. 1–2 (82–83), pp. 145–151. (In Russian).
6. Francisco P.W., Jacobs D.E., Targos L., Dixon S.L., Breysse J., Rose W. Ventilation, indoor air quality, and health in homes undergoing weatherization. Indoor Air. 2017. No. 27 (2), pp. 463–477.
7. Isiugo K., Jandarov R., Cox J., Chillrud S., Grinshpun S.A., Hyttinen M., Yermakov M., Wang J., Ross J., Reponen T. Predicting indoor concentrations of black carbon in residential environments. Atmos Environ. 2019. Vol. 201, pp. 223–230.
8. Полунин Г.А. Применение ультрафиолетовых светодиодов в фотокаталитических воздухоочистителях для очистки воздуха кабин мобильных машин // Технологии техносферной безопасности. 2012. № 6 (46). С. 12.
8. Polunin G.A. The use of ultraviolet LEDs in photocatalytic air purifiers for cleaning the air of cabins of mobile machines. Tekhnologii tekhnosfernoj bezopasnosti. 2012. No. 6 (46), pp. 12. (In Russian).
9. Патент РФ 2744623С1. Клапан приточной принудительной вентиляции с очисткой воздуха / Литвинова Н.А. Заявл. 17.06.2020. Опубл. 12.03.2021. Бюл. № 8.
9. Patent RF 2744623С1. Klapan pritochnoj prinuditel’noj ventilyacii s ochistkoj vozduha [Forced air supply ventilation valve with air purification]. Litvinova N.A. Declared 17.06.2020. Published 12.03.2021. Bull. No. 8. (In Russian).
10. Свидетельство о государственной регистрации программы для ЭВМ 2020660657. Расчет и обоснование технических характеристик сорбентов в клапанах приточной принудительной вентиляции зданий в условиях повышенного загрязнения атмосферы / Литвинова Н.А. Заявл. 30.08.2020. Опубл. 09.09.2020.
10. Certificate of state registration of the computer program 2020660657. Raschet i obosnovanie tekhnicheskih harakteristik sorbentov v klapanah pritochnoj prinuditel’noj ventilyacii zdanij v usloviyah povyshennogo zagryazneniya atmosfery [Calculation and justification of the technical characteristics of sorbents in the valves of supply forced ventilation of buildings in conditions of increased atmospheric pollution] / Litvinova N.A. Declared 30.08.2020. Published 09.09.2020. (In Russian).
11. Свидетельство о государственной регистрации программы для ЭВМ 2022610810. Расчет концентраций загрязнителей внутри помещений многоэтажных зданий по времени суток от автотранспортных магистралей в городской среде / Литвинова Н.А., Азаров В.Н. Заявл. 29.12.2021. Опубл. 17.01.2022.
11. Certificate of state registration of the computer program 2022610810. Raschet koncentracij zagryaznitelej vnutri pomeshchenij mnogoetazhnyh zdanij po vremeni sutok ot avtotransportnyh magistralej v gorodskoj srede [Calculation of concentrations of pollutants inside the premises of multi-storey buildings by time of day from highways in the urban environment] / Litvinova N.A., Azarov V.N. Declared 29.12.2021. Published 17.01.2022. (In Russian).

For citation: Litvinova N.A., Azarov V.N. Efficiency of operation of wall valves for supply forced ventilation with air purification in multi-apartment residential buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 70–76. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-70-76

Architectural and Town-Planning Values of the Historical Development of Kuban: on the Example of Krasnodar

Number of journal: 10-2023
Autors:

Subbotin O.S.

DOI: https://doi.org/10.31659/0044-4472-2023-10-63-69
УДК: 728.03

 

AbstractAbout AuthorsReferences
The architectural features of the historical development of urban and rural settlements of Kuban, namely Krasnodar, in connection with architectural heritage monuments are revealed. The planning and compositional aspects characterizing the development of the studied city are revealed. The analysis of the historically developed town-planning situation of Ekaterinodar in the beginning of the XIX – beginning of the XX century in the context of architectural and town-planning development is carried out. The main architectural styles and trends used in the architecture of buildings and structures of Krasnodar are considered. A significant place is given to the Ekaterinodar mansions belonging to the merchant V.K. Rubezhansky and engineer B.B. Shardanov – architectural monuments of regional significance that harmoniously fit into the surrounding buildings. Attention is focused on the careful preservation of historical buildings, architectural heritage, valuable city-forming buildings and structures. The practical significance of the study is determined by the possibility of using the materials of the article in the development of the concept of regeneration of historical buildings.
O.S. SUBBOTIN, Doctor of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kuban State Agrarian University named after I.T. Trubilin (13, Kalinina Street, Krasnodar, 350044, Russian Federation)

1. Subbotin O.S. Folk architecture of the traditional Kuban dwelling. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 8, pp. 18–22. (In Russian).
2. Vavilonskaya T.V. Strategiya obnovleniya arkhitekturno-istoricheskoy sredy: monografiya. [Strategy for updating the architectural and historical environment: monograph]. Samara: Samarsk. state arch.-build. un-t.2008. 368 p.
3. Shumilkin S.M., Shumilkin M.S. Preservation of the historical complex of the Nizhny Novgorod fair in Nizhny Novgorod. Privolzhskiy nauchnuy jurnal. 2023. No. 2 (66), pp. 160–166. (In Russian).
4. Subbotin O.S. Architectural and planning principles of organization and reconstruction of coastal areas. Materials Science Forum. 2018. Vol. 931. С. 750–753.
5. Kuban’ starozavetnaya. [Kuban Old Testament]. Ed.-comp. B.N. Ustinov (photo). P.S. Makarenko (text). Krasnodar: Tradition. 2012. 324 p.
6. Shakhova G.S. Krasnodarskaya ulitsa Krasnaya: kniga ob istorii glavnoy ulitsy Krasnodara. [Krasnodar street Krasnaya: a book about the history of the main street of Krasnodar]. Krasnodar: Krasnodar. Izvestiya. 1997. 132 p.
7. Bardadym V.P. Arkhitektura Ekaterinodara. [Architecture of Ekaterinodar]. Krasnodar: Ed. Yu.Yu. Lebedev. 2009. 400 p.
8. Subbotin O.S. The history of the architecture of Orthodox churches on the Black Sea coast of Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2013. No. 8, pp. 18–22. (In Russian).
9. Shumilkin A.S. Kontseptsiya restavratsii arkhitekturnogo naslediya v Rossii XX–XXI vv.: monografiya. [The concept of restoration of architectural heritage in Russia in the XX–XXI centuries: monograph]. Nizhny Novgorod: NNGASU. 2021. 346 p.
10. Subbotin O.S. Cultural and historical potential of the urban environment (regional aspect). IOP Conference Series: Materials Science and Engineering. 2020. 775 (1). 012036. DOI: 10.1088/1757-899X/775/1/012036

For citation: Subbotin O.S. Architectural and town-planning values of the historical development of Kuban: on the example of Krasnodar. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 63–69. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-63-69

BIM Modeling as the Main Tool for Digitalization of Educational Technologies in Training Personnel of the Construction Industry

Number of journal: 10-2023
Autors:

Sakmarova L.A.,
Bakhmisova M.A.

DOI: https://doi.org/10.31659/0044-4472-2023-10-56-62
УДК: 378.1:624:004

 

AbstractAbout AuthorsReferences
As part of the digitalization of education and to implement modern requirements in construction, a large amount of new knowledge and skills are required in the field of modern trends in the development of architecture and construction, including knowledge of information modeling technologies. The educational technologies presented in the study make it possible to teach students not only to use the tools of the software package, but also to apply knowledge of BIM modeling technologies at an interdisciplinary level to solve specific problems in the field of architectural design. This approach will improve the quality and reduce the time required for completing course projects and final qualifying works, as well as make it easier to enter the labor market and adapt to any new requirements that professional practice will present to a young specialist.
L.A. SAKMAROVA, Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. BAKHMISOVA, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Chuvash State University named after I.N. Ulianov (15, Moskovsky Avenue, Cheboksary, 428015, Chuvash Republic, Russian Federation)

1. Sakmarova L.A., Bakhmisova M.A. Application of BIM-technologies in the educational environment on the example of the building faculty of the Chuvash State University. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 10, pp. 11–17. (In Russian).
2. Gryzlov V.S. Expert-indicator approach to evaluation of learning of competencies in engineering-construction education. Stroitel’nye Materialy [Construction Materials]. 2018 No. 9, pp. 35–39. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2018-763-9-35-39
3. Poznanskaya S.G., Kutischev S.A., Rezanova I.A. Formation of readiness of future ungenerosity to innovative activity. Perspektivy nauki i obrazovaniya. 2018. No. 2 (32), pp. 75–79. (In Russian).
4. Sakmarova L.A. Retrospective analysis of the development of the comfort level of the housing stock in Cheboksary. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 14–19. (In Russian).
5. Sakmarova L.A. The specifics of the training of graduates of the specialty “Building Design”. Vestnik of Chuvash University. 2011. No. 2, pp. 270–275.
6. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
7. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glushkov V.E., Glushkov A.E. Calculation of flight augering piles of high bearing capacity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–26. (In Russian).
8. Sokolov N.S., Sokolov S.N., Sokolov A.N. Experience in restoring the building of the Vvedensky Cathedral in the city of Cheboksary. Geotechnica. 2016. No. 1, pp. 60–65. (In Russian).
9. Sokolov N.S., Sokolov S.N., Sokolov A.N., Fedo-rov P.Yu. The use of electric discharge technology bored piles as increased bearing capacity foundations base. Promyshlennoe i grazhdanskoe stroitelstvo. 2017. No. 9, pp. 66–70. (In Russian).
10. Sokolov N.S., Nikonorova I.V., Construction and territorial development of landslide slopes of the Cheboksary water reservoir. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 9, pp. 13–19. (In Russian).
11. Sokolov N.S., Viktorova S.S. Research and development of a discharge device for the production of a flight augering pile. Stroitel’stvo: Novye tekhnologii – Novoe oborudovanie. 2017. No. 12, pp. 37–42. (In Russian).
12. Solin S.V., Sakmarova L.A. Problems of implementing building information modeling (BIM) in the Chuvash Republic and ways to solve them. Construction and development: life cycle – 2020: Materials of the V International (XI All-Russian) conference, Cheboksary, November, 2020. Cheboksary: Publishing House “Sreda”. 2020, pp. 47–54.

For citation: Sakmarova L.A., Bakhmisova M.A. BIM modeling as the main tool for digitalization of educational technologies in training personnel of the construction industry. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 56–62. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-56-62

The Influence of the Device of Deep Pits on the Bearing Capacity and Deformation of Pile Foundations of Surrounding Buildings

Number of journal: 10-2023
Autors:

Chunyuk D.Yu.,
Grishin V.S.

DOI: https://doi.org/10.31659/0044-4472-2023-10-48-55
УДК: 624.159.2

 

AbstractAbout AuthorsReferences
The article deals with the issue of the influence of the open pit construction on the nearby pile foundation of the surrounding buildings (existing or designed as protective measures). Within the framework of this work, computational schemes with a single pile located within (scheme 1) and below (scheme 2) the boundaries of the collapse prism were considered, as well as available pile modeling tools were analyzed. Based on the results of numerical experiments, conclusions are drawn about additional vertical and horizontal displacements, friction forces and internal forces. There is a significant transformation of the scheme of the foundation and the emergence of negative factors that reduce the margin of reliability of the structures under consideration. The question is raised about the need to develop a methodology for taking into account the phenomena considered and fixing special requirements for design and calculation in the norms.
D.Yu. CHUNYUK, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. GRISHIN, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Chunyuk D.Yu., Selvian S.M. Determination of the probability of occurrence of excess deformations of buildings in the zone of influence of deep pits. Ekonomika Stroitel’stva. 2022. No. 1 (73), pp. 54–61. (In Russian).
2. Ilyichev V.A., Nikiforova N.S., Gotman Yu. A., Trofimov E. Yu. The effectiveness of the use of active and passive methods of environmental protection in the zone of influence of underground construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 6, pp. 11–15. (In Russian).
3. Polishchuk A.I., Semenov V.I. Design of reinforcement of foundations of reconstructed, restored buildings using piles. Construction and Geotechnics. 2020. Vol. 11. No. 4, pp. 33–45. (In Russian). DOI: 10.15593/2224-9826/2020.4.03
4. Polishchuk A.I., Petukhov A.A. Methods of strengthening foundations and building structures of the basement of reconstructed, restored buildings. Vestnik of the Perm National Research Polytechnic University. Construction and architecture. 2018. Vol. 9. No. 1, pp. 42–51. (In Russian). DOI: 10.15593/2224-9826/2018.1.04
5. Gotman N.Z., Davletyarov D.A., Kayumov M.Z. The experience of strengthening pile foundations using drill-injection piles (BIS). Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Stroitel’stvo i arkhitektura. 2014. No. 3, pp. 158–166. (In Russian).
6. Sokolov N.S., Sokolov S.N., Sokolov A.N. The use of boron-injection piles in strengthening the foundations of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 47–51. (In Russian).
7. Sokolov N.S., Ryabinov V.M. About efficiency of the device the buroinjektsionnykh of piles with multi-seater broadenings with use of electro-digit technology. Geotechnica. 2016. No. 2, pp. 28–32. (In Russian).
8. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
9. Savinov A.V. The use of piles immersed by indentation to correct the consequences of ineffective reinforcement of foundations during the reconstruction of objects of historical and architectural heritage. Vestnik VolgGASU. Seriya: Stroitel’stvo i arkhitektura. 2005. No. 5, pp. 100–106. (In Russian).
10. Nesterov A.S., Gritsenko V.A. Indentation of multi-section piles made of reinforced plastic when strengthening foundations. Tekhnika i tekhnologii stroitel’stva. 2015. No. 3 (3), pp. 44–50. (In Russian).
11. Chunyuk M.S. The experience of using soil-cement piles when strengthening an emergency building located on the edge of a deep pit. Perspektivy nauki. 2021. No. 3 (138), pp. 191–194. (In Russian).
12. Chunyuk M.S. The use of soil-cement piles in strengthening the foundations and foundations of existing buildings in the zone of influence of deep pits. Perspektivy nauki. 2019. No. 3 (114), pp. 208–210. (In Russian).
13. Malinin P.A., Strunin P.V. Development and application of jet cementation of soils for the device of self-drilling anchor piles. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 9, pp. 50–54. (In Russian).
14. Malinin A.G., Malinin D.A. Anchor piles “Atlant”. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 5, pp. 60–62. (In Russian).
15. Gotman A.L. Calculation of anti-landslide pile structures. Internet-vestnik VolgGASU. 2013. No. 2 (27), pp. 1. (In Russian).
16. Vlasov A.N., Korolev M.V., Znamensky V.V., Korolev P.M. The use of crushed piles in the construction of foundations of buildings and structures erected near potentially dangerous landslide slopes. Nauka i biznes: puti razvitiya. 2018. No. 6 (84), pp. 52–59. (In Russian).
17. Rafał F. Obrzud. On the use of the Hardening Soil Small Strain model in geotechnical practice. Numerics in geotechnics and structures. 2010.
18. Soomro Mukhtiar, Mangi Naeem, Cheng Jason Wen-chieh. The effects of multipropped deep excavation-induced ground movements on adjacent high-rise building founded on piled raft in sand // Advances in Civil Engineering. 2020. 10.1155/2020/8897507
19. Uge Bantayehu, Guo Yuancheng, Liu Yunlong. Numerical analysis on the load sharing performance of long-short cfg pile composite foundation subjected to rotation of adjacent retaining wall // Advances in Civil Engineering. 2021. 10.1155/2021/9923534

For citation: Chunyuk D.Yu., Grishin V.S. The influence of the device of deep pits on the bearing capacity and deformation of pile foundations of surrounding buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 48–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-48-55

Dynamic Analysis of the Turbine Unit Foundation in its Interaction with the Existing Foundation

Number of journal: 10-2023
Autors:

Smirnov V.A.,
Garber E.O.,
Malov D.D.

DOI: https://doi.org/10.31659/0044-4472-2023-10-42-47
УДК: 624.15

 

AbstractAbout AuthorsReferences
The article is devoted to the issue of determining the parameters of the stress-strain state of the foundation of the turbine unit PR-30/35-90/10/1.2, installed in the building of the reconstructed Power Plant. The main difficulty in arranging a new foundation on the existing one is the issue of ensuring the joint operation of the two foundations, as well as reducing the amplitudes of dynamic oscillations of the foundation of the new turbine unit. To solve the problem, a three-dimensional idealized model of the foundation of a new turbine unit was developed, as well as a model of the existing foundation. The problem was solved in a contact formulation in order to be able to model the detachment of a new foundation from the existing one. The parameters of the SSS of the foundation of a new turbine unit are determined and recommendations are given to ensure their joint operation. Recommendations for the construction of mathematical models of the turbine unit - foundation system are formulated.
V.A.SMIRNOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.O. GARBER1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.D. MALOV2, Engineer

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Sedin V.L. Razvitie analiticheskikh metodov rascheta fundamentov slozhnoi formy dlya energooborudovaniya [Development of analytical methods for calculating foundations of complex shape for power equipment]. Dnepropetrovsk: PGASA. 1996. 38 p.
2. Barstein M.F., Ilyichev V.A., Korenev B.G. Dinamicheskii raschet zdanii i sooruzhenii [Dynamic calculation of buildings and structures]. Moscow: Stroyizdat. 1984. 303 p.
3. Andrianov I.V., Kononenko S.I., Sedina V.L. Calculation of plates with wide ribs. Prikladnaya mekhanika. 1995. Vol. 31, pp. 75–83. (In Russian).
4. Demyanenko V.V., Sedina V.L. Determination of amplitude-frequency characteristics of steel foundations. Intensification of work processes of construction production. Kiev: ISIO. 1993, pp. 94–95. (In Russian).
5. Savinov O.A. Sovremennye konstruktsii fundamentov pod mashiny i ikh raschet [Modern constructions of foundations for machines and their calculation]. Leningrad: Stroyizdat. 1979. 200 p.
6. Shulzhenko N.G., Vorobyev Yu.S. Chislennyi analiz kolebanii sistemy turboagregat – fundament [Numerical analysis of vibrations of the turbine unit – foundation system]. Kiev: Naukova dumka. 1991. 232 p.
7. Sargsyan A.E., Gukova E.G. The effectiveness of the implementation of pile foundations on the example of the construction of the reactor department of a nuclear power plant with VVER-1000. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2020. Vol. 16. No. 1, pp. 14–21. (In Russian). http://dx.doi.org/10.22363/1815-5235-2020-16-1-14-21
8. Zeitlin B.V. Studies of oscillations in the foundation – generator system of a power unit with a capacity of 100 MWt. Izvestiya VNIIG im. B.E. Vedeneeva. 2016. Vol. 279, pp. 75–84. (In Russian).
9. Krasnikov S.V. Investigation of natural oscillations of the turbine unit-foundation-base system with various contact loss schemes. Vіsnik NTU “KhPІ”: Serіya “Dinamіka ta mіtsnіst’ mashin”. 2007. No. 22, pp. 85–90.
10. Zhukovsky A.M., Zeitlin B.V. Analysis of vibrations of new constructionfundaments for turbine units. Izvestiya VNIIG im. B.E. Vedeneeva. 1985. Vol. 184, pp. 30–37. (In Russian).
11. Kinder V.A., Zeitlin B.V. Raschet kolebanii pamnogo fundamenta suchetom vzaimodeistviya s tupboagpegatom [Calculation of vibrations of the frame foundation by means of interaction with the turbine unit]. Leningrad: Stroyizdat. 1989, pp. 233–237.
12. Kinder V.A., Zeitlin B.V. Calculation of oscillations in the turbine unit-foundation-base system using the modal synthesis method. Izvestiya VNIIG im. B.E. Vedeneeva. 1990. Vol. 218, pp. 46–54. (In Russian).
13. Ilyichev V.A. Raboty NIIOSPa po povysheniyu nadezhnosti sistemy turboagregat-fundament-osnovanie. Trudy koordinatsionnykh soveshchanii po gidrotekhnike [The work of NIIOSPa to improve the reliability of the turbine unit-foundation-foundation system. Proceedings of coordination meetings on hydraulic engineering]. Moscow: Energia. 1976, pp. 32–34.
14. Privalova O.V., Fridman V.M. Statsionarnye i perekhodnye kolebaniya fundamenta turboagregata. Materialy konferentsii i soveshchanii po gidrotekhnike [Stationary and transient vibrations of the foundation of a turbine unit. Materials of conferences and meetings on hydraulic engineering]. Moscow: VNIIG im. B.E. Vedeneeva. 1982, pp. 221–224.
15. Rudnik V.Ya. Rezul’taty opredeleniya dinamicheskikh kharakteristik pri vertikal’nykh kolebaniyakh zhestkikh fundamentov. Trudy koordinatsionnykh soveshchanii po gidrotekhnike [Results of determination of dynamic characteristics under vertical vibrations of rigid foundations. Proceedings of coordination meetings on hydraulic engineering]. Leningrad: Energiya. 1973. pp. 51–55.
16. Tseitlin B.V., Kronidova E.D. Algorithm and results of calculation of non-stationary oscillations in the turbine unit-foundation-foundation system. Izvestiya VNIIG im. B.E. Vedeneeva. 1981. Vol. 148, pp. 50–59. (In Russian).

For citation: Smirnov V.A., Garber E.O., Malov D.D. Dynamic analysis of the turbine unit foundation in its interaction with the existing foundation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 42–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-42-47

Expanding the Borders of the City Due to the Development of Underground Spaces During the Reconstruction of Historical Buildings

Number of journal: 10-2023
Autors:

Serov A.D.

DOI: https://doi.org/10.31659/0044-4472-2023-10-35-41
УДК: 72.025.5

 

AbstractAbout AuthorsReferences
To integrate historical buildings into a modern urban environment, their functional expansion is necessary. The positive and negative aspects of placing structures underground are given. Ways to solve some problems of underground premises are proposed, in particular those related to the difficulty of providing them with natural light. A typology of ways to expand the underground space during the reconstruction of historical buildings is introduced. On the basis of implemented projects the most sparing technologies for expanding the underground space under existing facilities in relation to historical structures are analyzed.
A.D. SEROV, Engineer, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Shashkin A.G., Zentsov V.N., Ulitskii V.M. Development of the underground space of the metropolis. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 9, pp. 30–36. (In Russian).
2. Shashkin A.G., Shashkin K.G. Underground construction in St. Petersburg: a brief overview of technical solutions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 9, pp 30–35. (In Russian).
3. Bogov C.G. Application of jet grouting technology for the development of the underground space of St. Petersburg. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 12, pp 31–43. (In Russian).
4. Belyaev V.L., Belyaev V.B. Development of the underground space of cities in the aspect of their sustainable development. Vestnik MUCI. 2014. No. 2, pp. 7–12. (In Russian).
5. Serov A.D., Dmitriev I.K. Influence of transport noise on living environment in New Moscown. IOP Conference Series: Earth and Environmental Science. 2021. No. 687, pp. 1–6. DOI: 10.1088/1755-1315/867/1/012109
6. Denisova Yu.V., Koren’kova G.V. On the issue of the need to develop the underground space of cities. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2016. No. 11, pp 99–103. (In Russian).
7. Shulyat’ev O.A., Mozgacheva O.A., Pospekhov V.S. Osvoenie podzemnogo prostranstva gorodov [Development of the underground space of cities]. Moscow: ASV. 2017. 510 p.
8. Shashkin A.G., Bogov S.G. The use of jet grouting technology in the construction of an underground volume in conditions of weak clay soils. Osnovaniya, fundamenty i mekhanika gruntov. 2005. No. 5, pp. 7–11. (In Russian).
9. Mangushev R.A., Osokin A.I., Sotnikov S.I. Geotekhnika Sankt-Peterburga. Opyt stroitel’stva na slabykh gruntakh [Geotechnics of St. Petersburg. Experience in construction on weak soils]. Moscow: ASV. 2018. 386 p.
10. Ulitskii V.M., Shashkin A.G. Arrangement of the underground volume of the second stage of the Mariinsky Theater in conditions of weak clay soils. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2011. No. 10, pp. 24–31. (In Russian).
11. Ulitskii V.M., Bogov S.G., Shakhnazarov A.V. Construction of safe parking lots in the built-up central part of St. Petersburg. Gidrotekhnika. 2012. No. 3, pp. 105–109. (In Russian).
12. Sosnovskikh L.V., Oleneva A.A. Atrium recessed public spaces. Sovremennye tekhnologii v stroitel’stve. Teoriya i praktika. 2017. Vol. 2, pp. 13–20. (In Russian).
13. Dement’eva V.A., Rakhmanov V.C., Shashkin A.G. Vozrozhdenie Kamennoostrovskogo teatra: sintez nauchnykh dostizhenii restavratsii i geotekhniki [Revival of the Kamennoostrovsky Theatre: synthesis of scientific achievements of restoration and geotechnics]. Saint Petersburg: Stroizdat Severo-Zapad, Georekonstruktsiya. 2012. 166 p.
14. Ulitskii V.M., Shashkin A.G. Preservation of architectural memorials and ensuring their mechanical safety. Promyshlennoe i graghdanskoe stroitel’stvo. 2017. No. 7, pp. 31–39. (In Russian).
15. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
16. Solov’ev A.K. Daylight in underground spaces. Svetotekhnika. 2018. No. 2, pp. 70–74. (In Russian).
17. Malysheva A.N., Kononova M.S., Vorob’eva Yu.A. Analysis of applicability of various natural lighting systems for civil design buildings. Zhilishchnoe khozyaistvo i kommunal’naya infrastruktura. 2018. No. 2 (5), pp. 9–17. (In Russian).

For citation: Serov A.D. Expanding the borders of the city due to the development of underground spaces during the reconstruction of historical buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 35–41. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-35-41

https://www.traditionrolex.com/11