Личный кабинет

A New Concept of Using the Living Space of Historical Underground Casemated Barracks in the Kerch Fortress

Number of journal: 11-2022
Autors:

Panukhin P.V.

DOI: https://doi.org/10.31659/0044-4472-2022-11-51-57
УДК: 711.165

 

AbstractAbout AuthorsReferences
The article analyzes the problem of modern use of architectural objects of historical military heritage. On the example of the Reconstruction Project of of the complex of casemated barracks in the Fortress of Kerch (Republic of Crimea), examples of adaptation of the Lower and French barracks, built in the second half of the XIX century, for modern hotels of small and medium capacity are given. It is substantiated that the return of the function of housing equipped with the most modern life support systems to the underground casemated barracks of the Kerch Fortress seems to be the most natural functional filling of their space, and, in addition, an extremely relevant project in connection with the Federal Program of Import Substitution in the field of tourism.
P.V. PANUKHIN, Candidate of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow Institute of Architecture (State Academy) – MARKHI) (11, Rozhdestvenka Street, 107031, Moscow, Russian Federation)

1. Notes of Eduard Ivanovich Totleben during the defense of Sevastopol in 1854–1855. Voenno-istoricheskii zhurnal. 2007. No. 7, pp. 17–25. (In Russian).
2. Belik Yu.L. Krepost’ Kerch’ [Fortress of Kerch]. Kerch: Ignatov K.E. 2017. 143 p.
3. Panukhin P.V. Totleben. K 200-letiyu so dnya rozhdeniya [Totleben. To the 200th anniversary of his birth]. Moscow: Architectura-S. 2018. Vol. 1. 406 p.
4. Shperk V.F. Fortifikatsiya (ocherki po istorii razvitiya) [Fortification (essays on the history of development)]. Moscow: Voenizdat, 1940.
5. Panukhin P.V. Prostranstvo i vremya na kartakh Kryma [Space and time on maps of the Crimea]. Moscow: Architectura-S. 2020. 455 p.
6. Yakovlev V.V. Evolyutsiya dolgovremennoi fortifikatsii [The evolution of long-term fortification]. Moscow: Voenizdat. 1937.
7. Panukhin P.V. Totleben. Krepost’ Kerch’ [Totleben. Fortress Kerch]. Moscow: Architectura-C. 2018.Vol. 2. 464 p.
8. Panukhin P.V. About the project of comprehensive reconstruction and functional adjustment of the architectural ensemble of the Kerch fortress near the Krymsky bridge. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 9, pp. 18–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-18-24
9. Panukhin P.V. Cooperation of Peter I and N. Witsen in positioning fortifications of the time of the First and Second Azov campaigns (To the 350th anniversary of the birth of Peter the Great). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 8, pp. 3–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-8-3-10
10. Prokofieva I.A. The history of the trading house of the Economic society of officers on Vozdvizhenka. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 8, pp. 11–16. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-8-11-16

For citation: Panukhin P.V. A new concept of using the living space of historical underground casemated barracks in the Kerch Fortress. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-51-57

Results of Mechanical Tests of Composite Material Used in Strengthening Reinforced Concrete Structureswith External Reinforcement

Number of journal: 11-2022
Autors:

Denisova A.D.,
Shekhovtsov A.S.,
Kuzhman E.D.

DOI: https://doi.org/10.31659/0044-4472-2022-11-44-50
УДК: 678.029.46

 

AbstractAbout AuthorsReferences
The results of the composite material (FRP laminate) tensile tests are presented. The main mechanical characteristics of the FRP (tensile strength, relative elongation, modulus of elasticity along the fibers, Poisson’s ratio) were determined for specimens 20 mm wide (according to GOST 25.601) and 50 mm (the most useful FRP laminate’s width in real strengthening practice). Diagrams of deformation and loading are obtained. During the tests, it was established that the tensile strength of FRP laminates depends on the relative area of destruction.
A.D. DENISOVA, Postgraduate Student (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.S. SHEKHOVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.D. KUZHMAN, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint Petersburg State University of Architectures and Civil Engineering (4, 2nd Krasnoarmeiskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Hollaway L.C. A review of the present and future utilization of FRP composites in the civil infrastructure with reference to their important in-service properties. Construction and Building Materials. 2010. Vol. 24.Iss. 12, pp. 2419–2445. https://doi.org/10.1016/j.conbuildmat.2010.04.062
2. Cromwell J.K., Harries R.A., Shahrooz B.M. Environmental durability of externally bonded FRP materials intended for repair of concrete structures. Construction and Building Materials. 2011. Vol. 25.Iss. 5, pp. 2528–2539. https://doi.org/10.1016/j.conbuildmat.2010.11.096
3. Ceroni F. Experimental performances of RC beams strengthened with FRP materials. Construction and Building Materials. 2010. Vol. 24. Iss. 9, pp. 1547–1559. https://doi.org/10.1016/j.conbuildmat.2010.03.008
4. Ismail M.I. Qeshta, Payam Shafigh, Mohd Zamin Jumaat. Research progress on the flexural behaviour of externally bonded RC beams. Archives of Civil and Mechanical Engineering. 2016. Vol. 16. Iss. 4, pp. 982–1003. https://doi.org/10.1016/j.acme.2016.07.002
5. Muhammad Aslam, Payam Shafigh, Mohd Zamin Jumaat, S N R Shah. Strengthening of RC beams using prestressed fiber reinforced polymers – A review. Construction and Building Materials. 2015.Vol. 82, pp. 235–256. https://doi.org/10.1016/j.conbuildmat.2015.02.051
6. Changyuan Liu, Xin Wang, Jianzhe Shi, Lulu Liu, Zhishen Wu. Experimental study on the flexural behavior of RC beams strengthened with prestressed BFRP laminates. Engineering Structures. 2021. Vol. 233, pp.1–14. https://doi.org/10.1016/j.engstruct.2020.111801
7. Luís Correia, José Sena-Cruz, Julien Michels. Flexural behaviour of RS slabs strengthened with prestressed CFRP strips using different anchorage systems. Composites. Part B: Engineering. 2015.Vol. 81, pp. 158–170. https://doi.org/10.1016/j.compositesb.2015.07.011
8. Luís Correia, José Sena-Cruz, Julien Michels. Durability of RC slabs strengthened with prestressed CFRP laminate strips under different environmental and loading conditions. Composites. Part B: Engineering. 2017. Vol. 125, pp. 71–88. https://doi.org/10.1016/j.compositesb.2017.05.047
9. Björn Täljsten, Christian Skodborg Hansen, Jacob Wittrup Schmidt. Strengthening of old metallic structures in fatigue with prestressed and non-prestressed CFRP laminates. Construction and Building Materials. 2009. Vol. 23. Iss. 4, pp. 1665–1677. https://doi.org/10.1016/j.conbuildmat.2008.08.001
10. Dong-Suk Yang, Sun-Kyu Park, Kenneth W. Neale. Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites. Composite structures. 2009. Vol. 88. Iss. 4, pp. 497–508. https://doi.org/10.1016/j.compstruct.2008.05.016
11. Li X., Deng J., Wang Yi. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Time-dependent prestress loss. Construction and Building Materials. 2021. Vol. 275, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2020.122187
12. Deng J., Li Xiaoda, Wang Yi. RC beams strengthened by prestressed CFRP plate subjected to sustained loading and continuous wetting condition: Flexural behavior. Construction and Building Materials. 2021. Vol. 311, pp. 1–14. https://doi.org/10.1016/j.conbuildmat.2021.125290
13. Obaidat Ya. T., Heyden S., Dahlblom O. Retrofitting of reinforced concrete beams using composite laminates. Construction and Building Materials. 2011.Vol. 25. Iss. 2, pp. 591–597. https://doi.org/10.1016/j.conbuildmat.2010.06.082
14. Ceroni F. Experimental performances of RC beams strengthened with FRP materials. Construction and Building Materials. 2010. Vol. 24. Iss. 9, pp. 1547–1559. https://doi.org/10.1016/j.conbuildmat.2010.03.008
15. Chajes M.J., Thomson Jr Th. A., Januszka T.F., Finch Jr. W. W. Flexural strengthening of concrete beams using externally bonded composite materials. Construction and Building Materials. 1994.Vol. 8. Iss. 3, pp. 191–201. https://doi.org/10.1016/S0950-0618(09)90034-4
16. Wang Y.C., Chen C.H. Analytical study on reinforced concrete beams strengthened for flexure and shear with composite plates. Composite structures. 2003. Vol. 59. Iss. 1, pp. 137–148. https://doi.org/10.1016/S0263-8223(02)00171-X
17. Godat A., Hammad F., Chaallal O. State-of-the-art review of anchored FRP shear-strengthened RC beams: A study of influencing factors. Composite Structures. 2020. Vol. 254, pp. 1–19. https://doi.org/10.1016/j.compstruct.2020.112767
18. Yang J., Haghani R., Blanksvärd Th., Lundgren K. Experimental study of FRP-strengthened concrete beams with corroded reinforcement. Construction and Building Materials. 2021. Vol. 301, pp. 1–10. https://doi.org/10.1016/j.conbuildmat.2021.124076

For citation: Denisova A.D., Shekhovtsov A.S., Kuzhman E.D. Results of mechanical tests of composite material used in strengthening reinforced concrete structures with external reinforcement. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 44–50. (In Russian).DOI: https://doi.org/10.31659/0044-4472-2022-11-44-50

Assessment of the Impact of Vibration on Buildings and Structures in the Zone of Influence of the Railway

Number of journal: 11-2022
Autors:

Smirnov V.A.,
Savulidi M.Yu.,
Smolyakov M.Yu.

DOI: https://doi.org/10.31659/0044-4472-2022-11-36-40
УДК: 534.833.524.2

 

AbstractAbout AuthorsReferences
The issue of assessing the impact of the dynamic load created by the rolling stock of railway lines on buildings and structures located near these tracks is considered. When expanding existing railway lines, the second and subsequent tracks are moved closer to the foundations of buildings and structures, as a result of which there is a risk of damage to structures caused by the action of dynamic forces, for which these buildings were not originally designed and capable of reducing their operational reliability. In the Russian Federation, GOST R 52892–2007 “Vibration and shock. Vibration of buildings. Vibration measurement and evaluation of its impact on the structure” is in force, which establishes the criteria for limiting vibration levels (peak values of vibration velocities of vibrations of foundations and load-bearing structures of a building) based on direct measurements in an existing building (structure). At the same time, this regulatory document does not contain a methodology for calculating the vibration levels of the building foundation from the designed track structure (taking into account its specific features, as well as engineering-geological characteristics and building characteristics). It is proposed to refine the methodology for predicting vibration based on the provisions of SP 441.1325800.2019 “Protection of buildings from vibration” generated by railway transport and assessing their impact on the bearing structures of buildings and structures with the criteria established by GOST R 52892–2007. The results of measurements of the vibration characteristics of trains of the third category according to SP 441.1325800 and the calculation of the zone of influence depending on the various characteristics of the foundation soils are presented.
V.A. SMIRNOV1,3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.Yu. SAVULIDI2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
M.Yu. SMOLYAKOV3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow,129337, Russian Federation)
2 JSC “Mosgiprotrans” (2, Pavel Korchagin Street, Moscow, 129626, Russian Federation)
3 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Georges Kouroussis, Harris P. Mouzakis and Konstantinos E. Vogiatzis. Structural impact response for assessing railway vibration induced on buildings. Mechanics and Industry. 2007. DOI: https://doi.org/10.1051/meca/2017043
2. Rainer J.H., Pernica G., Maurenbrecher A.H.P., Law K.T., Allen D.E. Effect of train-induced vibrations on houses – a case study. NRC Publications ArchiveArchives des publications du CNRC. 2010. Canada.
3. Смирнов В.А. Защита несущих конструкций зданий от влияния вибрации, создаваемой железно-дорожным транспортом // Жилищное строительство. 2020. № 12. С. 40–46. DOI: https://doi.org/10.31659/0044-4472-2020-12-40-46
3. Smirnov V.A. Protection of bearing structures of buildings against the influence of vibration generated by railway transport. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 12, pp. 40–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-12-40-46
4. Ren X., Wu J., Tang Y., Yang J. Propagation and attenuation characteristics of the vibration in soft soil foundations induced by high-speed trains. Soil Dynamics and Earthquake Engineering. 2019. No. 117, pp. 374–383. https://doi.org/10.1016/j.soil-dyn.2018.11.004
5. Connolly D.P., Kouroussis G., Laghrouche O., Ho C., Forde M.C. Benchmarking railway vibrations – track, vehicle, ground and building effects. Construction Building Materials. 2015. No. 92, pp. 64–81.
6. Смирнов В.А. Защита исторических памятников от вибраций, вызванных движением рельсового транспорта // БСТ. 2018. № 8. С. 23–25.
6. Smirnov V.A. Protection of historical monuments from vibrations caused by rail traffic. BST. 2018. No. 8, pp. 23–25. (In Russian).
7. Stiebel D., Muller R., Bongini E., Ekbald A., Coquel G., Alguacil A.A. Definition of reference cases typical for hot-spots in europe with existing vibration problems. Technical report. Rivas Project SCP0-GA-2010 -265754. Report to the EC (deliverable D1. 5). 2012
8. Connolly D.P., Marecki G.P., Kouroussis G., Thalassinakis I., Woodward P.K. The growth of railway ground vibration problems – A review. Science of the Total Environment. 2016.
9. Vogiatzis K. Protection of the cultural heritage from underground metro vibration and ground-borne noise in Athens centre: the case of the Kerameikos archaeological museum and Gazi cultural centre. International Journal of Acoustics and Vibration. 2012. No. 17, pp. 59–72.
10. Crispino M., D’Apuzzo M. Measurement and prediction of traffic-induced vibrations in a heritage building. International Journal of Acoustics and Vibration. 2001. No. 246, pp. 319–335.
11. Kouroussis G., Vogiatzis K.E., Connolly D.P. A combined numerical/experimental prediction method for urban railway vibration. Soil Dynamics and Earthquake Engineering. 2017. No. 97, pp. 377–386.

For citation: Smirnov V.A., Savulidi M.Yu., Smolyakov M.Yu. Assessment of the impact of vibration on buildings and structures in the zone of influence of the railway. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 36–40. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-36-40

Calculations of Sound Insulation of Single, Double and Triple Translucent Structures

Number of journal: 11-2022
Autors:

Ovsyannikov S.N.,
Samokhvalov A.S.,
Lelyuga O.V.,
Bolshanina T.S.

DOI: https://doi.org/10.31659/0044-4472-2022-11-29-35
УДК: 699.844.1

 

AbstractAbout AuthorsReferences
The creation of computational models of sound transmission through multilayer glazing and the development on their basis of methods for calculating and designing noise-proof windows in order to ensure comfortable acoustic conditions in civil buildings located in noisy areas is important. An analysis of the known analytical solutions to the problem of determining the sound insulation of one-, two- and three-layer glazing is given, the reasons for the discrepancy between the calculated and experimental results are identified. Methods of the wave theory of sound transmission through single-layer and multilayer enclosing structures with air gaps are used. An engineering method for calculating the sound insulation of multilayer glazing is proposed, based on the calculation of the inertial and resonant components of the transmission coefficient, taking into account internal losses in the field of resonant frequencies “mass-elasticity-mass”, the ratio of modal vibration densities in the room and the first glazing plate, as well as more realistic dependencies of the transmission coefficients on frequency. The results of calculations according to the proposed methodology are presented in comparison with the results of measurements of the sound insulation of various glazing in the reverberation chambers of the TGASU. The proposed engineering technique makes it possible to obtain fairly simple analytical dependences of the sound insulation of one-, two- and three-layer glazing, available for engineering practice, as well as to identify the inertial and resonant components of sound transmission to simulate sound transmission through more complex multilayer translucent structures using the method of statistical energy analysis.
S.N. OVSYANNIKOV1,2, Doctor of Sciences Engineering (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.S. SAMOKHVALOV1,2, Engineer, (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.V. LELYUGA1,2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
T.S. BOLSHANINA1,2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Tomsk State University of Architecture and Building (2, Solyanaya Square, Tomsk, 634003, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Cremer L. Theorie der schalldämmung wande bei schrügen einfall. Akust. Zeite. 1942, Bd. 7, No. 3, pp. 81–104.
2. Fahy F., Gardinio P. Sound and structural vibration. Radiation, transmission, response. Elsevier, Academic Press. 2006. 633 р.
3. Седов М.С. Звукоизоляция / Справочник «Техническая акустика транспортных машин»: Под ред. д-ра техн. наук профессора Н.И. Иванова. СПб.: Политехника, 1992. С. 68–106.
3. Sedov M.S. Zvukoizolyatsiya / Spravochnik «Tekhnicheskaya akustika transportnykh mashin»: Pod red. d-ra tekhn. nauk professora N.I. Ivanova [Soundproofing. Handbook «Technical acoustics of transport vehicles»: Ed. Dr. tech. Sciences Professor N.I. Ivanov]. Saint Petersburg: Polytechnic. 1992, pp. 68–106.
4. London A. Transmission of reverberent sound through double walls. J. Acoust. Soc. Amer. 1950. Vol. 22. No. 2, pp. 270–279.
5. Gosele K. Zur Luftschalldammung von einschaligen Wanden und Decken. Acustica. 1968. No. 20, p. 334.
6. Gosele K. Zur Berechnung der Luftschalldammung von doppelschaligen bauteilen. Acustica. 1980. No. 45, p. 208.
7. Tadeu A.J.B., Mateus D.M.R. Sound transmission through single, double and triple glazing. Experimental evaluation. Applied Acoustics. 2001. Vol. 62, pp. 307–325.
8. Xin F.X., Lu T.J. Analytical modeling of sound transmission through clamped triple-panel partition separated by enclosed air cavities. European Journal of Mechanics A/Solids. 2011. Vol. 30, p. 770–782.
9. Kurra S. Comparison of the models predicting sound insulation values of multilayered building elements. Applied Acoustics. 2012. Vol. 73, pp. 575–589.
10. Осипов Г.Л., Бобылёв В.Н., Борисов Л.А. и др. Звукоизоляция и звукопоглощение. М.: АСТ; Астрель, 2004. 450 с.
10. Osipov G.L., Bobylev V.N., Borisov L.A. and others. Zvukoizolyatsiya i zvukopogloshchenie [Sound insulation and sound absorption]. Moscow: AST; Astrel. 2004. 450 p.
11. Бобылёв В.Н., Тишков В.А., Щёголев Д.Л., Мурыгин Д.В. Способ расчета двойных светопро-зрачных конструкций // Вестник Волжского регионального отделения Российской академии архитектуры и строительных наук. 2010. № 13. С. 91–94.
11. Bobylev B.H., Tishkov V.A., Shchegolev D.L., Murygin D.V. A method for calculating double translucent structures. Vestnik volzhskogo regional’nogo otdeleniya rossiiskoi akademii arkhitektury i stroitel’nykh nauk. 2010. No. 13, pp. 91–94. (In Russian).
12. Винокур Р.Ю. Об эффекте повышения звукоизоляции легких перегородок на низких частотах // Акустический журнал. 1983. Т. 29. № 3.
12. Vinokur R.Yu. On the effect of increasing the sound insulation of light partitions at low frequencies. Akusticheskii zhurnal. 1983. Vol. 29. No. 3. (In Russian).
13. Винокур Р.Ю. Расчет звукоизоляции окон жилых и общественных зданий: Дис. … канд. техн. наук. 1983. 157 с.
13. Vinokur R.Yu. Calculation of sound insulation of windows of residential and public buildings. Cand. Diss. (Engineering). 1983. 157 p. (In Russian).
14. Винокур Р.Ю., Лалаев Э.М. Теоретические и экспериментальные исследования звукоизоляционных стеклопакетов. В кн.: Борьба с шумом и звуковой вибрацией. М.: МДНТП, 1982. С. 62–67.
14. Vinokur R.Yu., Lalaev E.M. Teoreticheskie i eksperi-mental’nye issledovaniya zvukoizolyatsionnykh steklopaketov. V kn.: Bor’ba s shumom i zvukovoi vibratsiei [Theoretical and experimental studies of soundproof double-glazed windows. In the book: Struggle against noise and sound vibration]. Moscow: MDNTP. 1982, pp. 62–67.
15. Заборов В.И., Лалаев Э.М., Никольский В.Н. Звукоизоляция в жилых и общественных зданиях. М.: Стройиздат, 1979. 254 с.
15. Zaborov V.I., Lalaev E.M., Nikolsky V.N. Zvuko-izolyatsiya v zhilykh i obshchestvennykh zdaniyakh [Sound insulation in residential and public buildings]. Moscow: Stroyizdat. 1979. 254 p.
16. Овсянников С.Н., Самохвалов А.С. Окна в раздельных переплетах с высокой теплозвукоизоляцией // Строительные материалы. 2012. № 6. С. 42–43.
16. Ovsyannikov S.N., Samokhvalov A.S. Windows in separate bindings with high heat and sound insulation. Stroitel’nye Materialy [Construction Materials]. 2012. No. 6, pp. 42–43 (In Russian).

For citation: Ovsyannikov S.N., Samokhvalov A.S., Lelyuga O.V., Bolshanina T.S. Calculations of sound insulation of one-, two- and three-layer translucent structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 29–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-29-35

Analytical Calculation of the Complex Stress-Strain State of Reinforced PVC Profile under Temperature Load

Number of journal: 11-2022
Autors:

Aksenov I.S.,
Konstantinov A.P.

DOI: https://doi.org/10.31659/0044-4472-2022-11-19-28
УДК: 692.82

 

AbstractAbout AuthorsReferences
PVC profile windows are more susceptible to temperature deformations than other types of window structures due to the high value of the polyvinyl chloride coefficient of thermal expansion. For the climatic conditions of the Russian Federation, the deformation of PVC windows due to temperature loads is comparable with the deformation under wind loads. Temperature deformations lead to a significant reduction of windows technical and operational characteristics. However, at present, when designing PVC windows, the calculation of their temperature deformations is not performed. This is largely due to the lack of an engineering method for such calculation. This article deals with the problem of temperature bending of PVC profile reinforced with a metal core. A calculation scheme is proposed to determine the stress-strain state of the profile for any number of connection points of PVC and the core with self-tapping screws, which takes into account: the influence of longitudinal reaction forces arising at the attachment points due to unequal temperature shrinkage of PVC and metal, on profile deformations and the distribution of transverse reaction forces; external concentrated loads and moments applied to the PVC profile. An exact analytical solution of the problem has been proposed. The equations obtained have been verified on a test problem about the bending of a double casement window mullion without sashes and filled with sandwich panels. The results of the analytical calculation were compared with the results of laboratory experiment and the results of finite-element computer simulation (the misalignment was 1.4% and 3.2%, respectively). Measures have been proposed which, without changing the geometrical parameters of the PVC profile section and the reinforcing core, can reduce the value of their deflection under temperature loads.
I.S. AKSENOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Plotnikov A.A. Architectural and structural principles and innovations in glass buildings. Vestnik MGSU. 2015. No. 11, pp. 7–15. (In Russian).
2. Konstantinov A., Mukhin A. Architectural possibilities of using PVC window units in historical buildings. International Scientific Conference Environmental Science for Construction Industry – ESCI 2018. MATEC Web of Conferences. 2018. Vol. 193. DOI: 10.1051/matecconf/201819304018
3. Boriskina I.V., Plotnikov A.A., Zakharov A.V. Proektirovanie sovremennykh okonnykh sistem grazhdanskikh zdanii [Designing of modern window systems for civil buildings]. Moscow: ABC. 2003. 320 p.
4. Elmahdy A.H. Air leakage characteristics of windows subjected to simultaneous temperature and pressure differentials. Conf. Proc. Window Innovations. 1995. pp. 146–163.
5. Henry R., Patenaude A. Measurements of Window Air Leakage at Cold Temperatures and Impact on Annual Energy Performance of a House. ASHRAE trans. 1998. Vol. 104 (1b), pp. 1254–1260.
6. Shekhovtsov A.V. Air permeability of an PVC-window when exposed to freezing temperatures. Vestnik MGSU. 2011. No. 3–1, pp. 263–269. (In Russian)
7. Verkhovskii A.A., Zimin A.N., Potapov S.S. The applicability of modern translucent walling for the climatic regions of Russia. Zhilishchnoe Stroitel’stvo [Housing Consrtuction]. 2015. No. 6, pp. 16–19. (In Russian).
8. Konstantinov A., Verkhovsky A. Assessment of the negative temperatures influence on the PVC windows air permeability. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 022092. doi:10.1088/1757-899X/753/2/022092
9. Tsyganov A.I. Justification of the possibility of constructing passive multi-story residential buildings in the climatic conditions of Central Russia. Stroitel’stvo: nauka i obrazovanie. 2021. Vol. 11, Iss. 3, pp. 58–78. DOI: 10.22227/2305-5502.2021.3.4 (In Russian).
10. Verkhovskiy A., Bryzgalin V., Lyubakova E. Thermal deformation of window for climatic conditions of Russia. IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 463. 032048. doi:10.1088/1757-899X/463/3/032048
11. Konstantinov A., Verkhovsky A. Assessment of the wind and temperature loads influence on the PVC windows deformation. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 753. 032022. DOI: 10.1088/1757-899X/753/3/032022
12. Eldashov Yu.A., Sesyunin S.G., Kovrov V.N. Experimental study of typical window units for geometric stability and reduced heat transfer resistance when exposed thermal loads. Vestnik MGSU. 2009. No. 3, pp. 146–149. (In Russian).
13. Sesyunin S.G., Eldashov Yu.A. Simulation of the thermoelasticity problem on the example of the window unit structural design analysis. Svetoprozrachnye konstrukcii. 2005. No. 4, pp. 18–22. (In Russian).
14. Vlasenko D.V. Why the window is warping. Who is to blame and what to do? Okonnoe proizvodstvo. 2014. No. 39, pp. 42–44. (In Russian).
15. Aksenov I.S., Konstantinov A.P. An analytical method for calculating the stress-strain state of PVC window profiles under thermal loading. Vestnik MGSU. 2021. No. 11, pp. 1437–1451. (In Russian). DOI: 10.22227/1997-0935.2021.11.1437-1451
16. Aksenov I.S., Konstantinov A.P. Temperature deformations of PVC window profiles with reinforcement. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18, No. 2, pp. 98–111. DOI: 10.22337/2587-9618-2022-18-2-98-111

For citation: Aksenov I.S., Konstantinov A.P. Analytical calculation of the complex stress-strain state of reinforced PVC profile under temperature load. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 19–28. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-19-28

Boundary Conditions for Calculating Temperature Fields of Window Junction Nodes in the Window Sill Area

Number of journal: 11-2022
Autors:

Krutov A.A.,
Konstantinov A.P.

DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18
УДК: 692.82

 

AbstractAbout AuthorsReferences
The current requirements of regulatory documentation in the Russian Federation prescribe to perform numerical modeling of temperature fields of window junction nodes at uniform values of the heat transfer coefficient on all their internal surfaces. This approach does not reflect the real conditions of heat exchange near windows in winter. Because of this, in practice, condensation forms on the inner surfaces of windows in winter. In this paper, we have carried out the justification of the boundary conditions of heat exchange in the most unfavorable part of the window from the point of view of condensation formation – the area of the window’s abutment to the window sill. To do this, we have analyzed the current regulatory documentation and scientific research related to this issue. We performed laboratory studies of heat transfer near the inner surface of the window. Based on these studies, we have obtained refined values of local heat transfer coefficients for the inner surfaces of the lower part of the window. We compared the results of numerical simulation of window junction nodes under standard and refined boundary conditions. It showed that the use of standard boundary conditions leads to excessive temperatures on the inner surfaces of windows in comparison with laboratory data. This is especially noticeable in areas of the window with air stagnation (window frame, edge zone of the double-glazed window). The calculation of temperature fields performed using refined boundary conditions at the window frame and in the edge zone of the double-glazed window gives comparable results with the data of numerical studies. At the same time, the temperature difference of the window surfaces according to the results of calculation and testing does not exceed the measurement error of temperature sensors.
A.A. KRUTOV, Master’s degree (postgraduate student) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.P. KONSTANTINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow,129337, Russian Federation)

1. Umnyakova N.P., Butovsky I.N., Verkhovsky A.A., Chebotarev A.G. Requirements to heat protection of external enclosing structures of high-rise buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 12, pp. 7–11. (In Russian).
2. Zimin A.N., Bochkov I.V., Kryshov S.I., Umnyakova N.P. Heat transfer resistance and temperature on internal surfaces of translucent enclosing structures of residential buildings of Moscow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 24–29. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
3. Verkhovskiy A., Bryzgalin V., Lyubakova E. Thermal deformation of window for climatic conditions of Russia. IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 463. 032048. doi:10.1088/1757-899X/463/3/032048
4. Savin V.K. Stroitel’naya fizika: energoperenos, energoeffektivnost’, energosberezhenie [Construction physics: energy transfer, energy efficiency, energy saving]. Moscow: Lazur’. 2005. 432 p.
5. Kozlov V.V. Accuracy of calculation of the resistant resistance of heat transfer and temperature fields. Stroitelstvo i Reconstructciya. 2018. No. 3, pp. 62–74. (In Russian).
6. Konstantinov A.P., Krutov A.A., Tikhomirov A.M. Assessment of the PVC windows thermal characteristics in winter. Stroitel’nye Materialy [Construction Materials]. 2019. No. 8, pp. 65–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
7. Boriskina I.V. Zdaniya i sooruzheniya so svetoprozrachnymi fasadami i krovlyami. Teoreticheskie osnovy proektirovaniya svetoprozrachnyh konstrukcij [Buildings and structures with translucent facades and roofs. theoretical bases of designing of glass constructions]. Sankt-Peterburg: Lyubavich. 2012. 396 p.
8. Plotnikov A.A. Arhitektura mnogoetazhnyh zhilyh zdanij [Architecture of multi-storey residential buildings]. Moscow: MGSU. 2018. 341 p.
9. Bockh P. Heat Transfer. Basics and Practice. London-New York: Springer Heidelberg Dordrecht, 2012. 291 p.
10. Mokheimer E.M.A. Heat transfer from extended surfaces subject to variable heat transfer coefficient. Heat and Mass Transfer. 2003, pp. 131–138.
11. Elmahdy A.H., Frank T. Heat transfer at the edge of sealed insulating glass units: Comparison of hot box measurements with finite-difference modeling. ASHRAE Transactions. 1993. No. 99, pp. 915–922.
12. Curcija D. Effect of Realistic Boundary Conditions in Computer Modeling of Condensation Resistanse for Fenestration Systems. Thermal Envelopes. No. 7, pp. 405–414.
13. McGowan A.G. Computer simulation of window condensation potential. Thermal Envelopes. No. 7, pp. 229–235.
14. Wright J.L. A Simplified numerical method for assessing the condensation resistance of windows. ASHRAE Transactions. 1998. No. 1. Pt. 1, pp. 1–8.
15. Yazdanian M. Measurement of the exterior convective film coefficient for windows in low-rise buildings. ASHRAE Transactions. 1994. No. 100.
16. Drozdov V.A. Teploobmen v svetoprozrachnyh ograzhdayushchih konstrukciyah [Heat exchange in translucent enclosing structures]. Moscow: Strojizdat, 1979. 307 p.
17. Bogoslovskij V.N. Stroitel’naja teplofizika (teplofizicheskie osnovy otoplenija, ventiljacii i kondicionirovanija vozduha) [Construction thermophysics (thermophysical fundamentals of heating, ventilation and air conditioning)]. Saint-Petersburg: AVOK Severo-zapad. 2006. 400 p.
18. Hua Ge. Study on overall thermal performance of metal curtain walls. Hua Ge – Concordia University, Monreal. 2002. 326 p.
19. Griffith B.T. Experimental techniques for measuring temperature and velocity fields to improve the use and validation of building heat transfer models. Thermal Envelopes. No. 7, pp. 337–347.

For citation: Krutov A.A., Konstantinov A.P. Boundary conditions for calculating temperature fields of window junction nodes in the window sill area. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-11-18

Seasonal Changes in Indoor Air Humidity

Number of journal: 11-2022
Autors:

Plotnikov A.A.

DOI: https://doi.org/10.31659/0044-4472-2022-11-5-10
УДК: 69.07

 

AbstractAbout AuthorsReferences
The article considered the change in the absolute and relative humidity of outdoor and indoor air in the room during the annual cycle. In summer, the absolute and relative humidity of the indoor air is close to that of the outdoor air. In winter, humidity gradually decreases. However, due to turning on the heating nd the release of moisture from people, furniture and building structures, the change in the humidity of the indoor air goes more smoothly than the change in the humidity of the outdoor air. So at a temperature of -30oС, the absolute humidity of the outdoor air is reduced by 34 times compared to the summer, and indoors by only2 times. As a result, the difference between the absolute humidity of the air outside and inside the room in winter can reach up to 20 times with a relative humidity of 30% in the room. In winter, a person breathes air outside, the humidity of which is much lower than indoors. A further increase in the relative humidity of the air in winter to 40–50% leads to an increase in the difference in the absolute humidity of the air inside and outside, which is unfavorable both for enclosing building structures and for humans. Based on these considerations, the optimal indoor humidity during the heating period should be no higher than 30% and no lower than 20–25%. It is also not advisable to perform an assessment of the provision of thermal protection requirements on the internal surfaces of the enclosing structures of residential premises for winter operating conditions at calculated values of the relative humidity of the internal air over 30%.
A.A. PLOTNIKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Gorshkov A.S., Livchak V.I. History, evolution and development of regulatory requirements for enclosing structures. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2015. 3 (30), pp. 7–37. (In Russian).
2. Lickevich V.K. Zhilishche dlya cheloveka [Human habitation]. Moscow: Stroyizdat, 1991. 227 p. (In Russian).
3. Lickevich V.K., Konova L.I. Uchet prirodno-klimaticheskih uslovij mestnosti v arhitekturnom proektirovanii [Consideration of natural and climatic conditions of the area in architectural design]. Moscow: MARHI. 2011. 44 p.
4. Shukurov I.S. Heat-wind mode of residential development. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2005. No. 5, pp. 20–21. (In Russian).
5. Il’inskiy V.M. Stroitel’naja teplofizika. Ograzhdajushhie konstrukcii i mikroklimat zdanij [Building thermal physics. Building envelope and microclimate]. Moscow: Vysshaja shkola. 1974. 320 p. (In Russian).
6. Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchih chastej zdanij [Construction heat engineering of enclosing parts of buildings]. Moscow: AVOK. 2006. 256 p.
7. Ushkov F.V. Teploperedacha ograzhdayushchih konstrukcij pri fil’tracii vozduha [Heat transfer of enclosing structures during air filtration]. Moscow: Izdatel’stvo literatury po stroitel’stvu. 1969. 146 p.
8. Bogoslovskij V. N. Stroitel’naja teplofizika (teplofizicheskie osnovy otoplenija, ventiljacii i kondicionirovanija vozduha) [Construction thermophysics (thermophysical fundamentals of heating, ventilation and air conditioning)]. Saint-Peterburg: AVOK Severo-Zapad. 2006. 400 p.
9. Bodrov V.I. Stroitel’naya teplofizika [Building thermophysics]. N. Novgorod: NNGASU. 2015. 156 p.
10. Plotnikov A.A. Arhitektura mnogoetazhnyh zhilyh zdanij [Architecture of multi-storey residential buildings]. Moscow: MGSU. 2018. 341 p.
11. Straube J.G. Moisture in buildings. AVOK. 2002. No. 6, pp. 30–40. (In Russian).
12. Rymarov A.G. Distinctions of determining of the optimal air exchange in rooms of residential buildings Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 12, pp. 23–25. (In Russian).
13. Shklyarov N.D. i dr. Grazhdanskie krupnopanel’nye zdaniya na Krajnem Severe [Civilian large-panel buildings in the Far North]. Leningrad: Stroiizdat. 1984. 172 p.
14. Vas’kovskij A.P. Mikroklimat i temperaturno-vlazhnostnyj rezhim ograzhdayushchih konstrukcij zdanij na Severe [Civil building structures for construction in the North]. Leningrad: Strojizdat. 1986. 164 p.
15. Vas’kovskij A.P., Shklyarov N.D. Konstrukcii grazhdanskih zdanij dlya stroitel’stva na Severe [Civil building structures for construction in the North]. Leningrad: Strojizdat. 1979. 136 p.
16. Liber I.S. Proektirovanie otopleniya i ventilyacii zhilyh domov na Krajnem Severe [Design of heating and ventilation of residential buildings in the Far North]. Leningrad: Strojizdat. 1980, pp. 32–34.
17. Zimin A.N., Bochkov I.V., Kryshov S.I., Umnyakova N.P. Heat transfer resistance and temperature on internal surfaces of translucent enclosing structures of residential buildings of Moscow. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 24–29. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
18. Krutov A.A., Konstantinov A.P. The required resistance to heat transfer of translucent enclosing structures based on the comfortable conditions provision. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 11, pp. 14–20. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-11-14-20

For citation: Plotnikov A.A. Seasonal changes in indoor air humidity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 5–10. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-5-10

Energy Sustainability in the Life Cycle of Buildings in the Regions of Iraq

Number of journal: 10-2022
Autors:

Sheina S.G.,
Umnyakova N.P.,
Girya L.V.,
Muhsen Murtada Dahir Muhsen

DOI: https://doi.org/10.31659/0044-4472-2022-10-50-55
УДК: 676.012.3

 

AbstractAbout AuthorsReferences
Modern energy trends in the construction sector are considered and its share in national energy consumption is estimated. It examines the prevailing patterns of energy use in the buildings sector, as well as ongoing efforts in Iraq to improve energy efficiency and sustainability. It presents a vision for 2030 for a significant increase in energy efficiency in the building sector, based on a realistic approach; potential goals for 2030 and 2050 are presented based on scenarios, implemented policies and programs. The analysis is carried out at the national, sub-regional and regional levels. This article assesses the benefits that can be gained from improving the energy efficiency of buildings in the regions of Iraq, looks at current trends in energy demand in the building sector in the Arab countries, and identifies the main factors affecting their consumption and efficiency of indicators in the specified sector in the regions of Iraq and includes a description of the current energy policy and the state of each country in order to assess the efforts of the region to promote energy efficiency and sustainability in buildings. The report uses an analytical approach to assess the potential for energy efficiency improvements in new and existing buildings to identify the benefits of a range of energy efficiency programs for regions of Iraq.
S.G. SHEINA1, Doctor of Sciences (Engineering);
N.P. UMNYAKOVA2,3, Doctor of Sciences (Engineering),
L.V. GIRYA1, Candidate of Sciences (Engineering),
MUHSEN Murtada Dahir Muhsen1, Graduate Student

1 Don State Technical University (1, Gagarin Square, Rostov-on-Don, 344000, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivny proezd, Moscow, 127238, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Schenone C., Delponte I. Renewable energy sources in local sustainable energy action PLANs (SEAPs): analysis and outcomes. Energy Policy. 2021. Vol. 156. 112475. DOI: 10.1016/j.enpol.2021.112475
2. Hosseini Haghighi S., de Uribarri P.M.Á., Padsala R., Eicker U. Characterizing and structuring urban GIS data for housing stock energy modelling and retrofitting. Energy and Buildings. 2022. Vol. 256. 111706. DOI: 10.1016/j.enbuild.2021.111706
3. Шеина С.Г., Умнякова Н.П., Гиря Л.В., Рожина М.А. Лучшие европейские практики в области энерго-сбережения при проектировании медицинских учреждений // Жилищное строительство. 2021. № 7. С. 3–7. DOI: https://doi.org/10.31659/0044-4472-2021-7-3-7
3. Sheina S.G., Umnyakova N.P., Girya L.V., Rozhina M.A. Best European practices in the field of energy saving when designing medical institutions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 7, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-7-3-7
4. Шеина С.Г., Умнякова Н.П., Федяева П.В., Миненко Е.Н. Лучший европейский опыт внедрения энергосберегающих технологий в жилищном фонде Российской Федерации // Жилищное строительство. 2020. № 6. С. 29–34. DOI: https://doi.org/10.31659/0044-4472-2020-6-29-34
4. Sheina S.G., Umnyakova N.P., Fedyaeva P.V., Minenko E.N. The best European experience in implementing energy-saving technologies in the housing stock of the Russian Federation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 29–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-29-34
5. Opportunity mapping for urban scale renewable energy generation. Renewable Energy. 2020. 162, рр. 779–787. DOI: 10.1016/j.renene.2020.08.060
6. Cheng W., Li D., Liu Z., Brown R.D. Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of the Total Environment. 2021. Vol. 799. 149417. DOI: 10.3390/en14248573
7. Beşikci D., Sulukan E., Uyar T.S. An urban techno-economic analysis and modelling for Turkey. Renewable Energy Focus. 2021. Vol. 38, рр. 1–8. DOI: 10.1016/j.ref.2021.05.003
8. Hosseinihaghighi S., Panchabikesan K., Dabirian  S., Ouf M., Eicker U. Discovering, processing and consolidating housing stock and smart thermostat data in support of energy end-use mapping and housing retrofit program planning. Sustainable Cities and Society. 2022. Vol. 78. 103640. DOI: 10.1016/j.scs.2021.103640
9. Ремизов А.Н., Егорьев П.О. Экоустойчивый взгляд на интеграцию инновационных технологий в строительстве // Жилищное строительство. 2019. № 5. С. 17–24. DOI: https://doi.org/10.31659/0044-4472-2019-4-17-24
9. Remizov A.N., Egoriev P.O. Eco-sustainable view on integration of innovation technologies in construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 5, pp. 17–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-4-17-24
10. Navarro-Espinosa A. Mina-Casaran J.D., Echeverry D.F., Lozano C.A. On the value of community association for microgrid development: Learnings from multiple deterministic and stochastic planning designs. Applied Sciences (Switzerland). 2021. Vol. 11 (14). 6257. DOI: 10.3390/app11146257
11. Matschoss K., Repo P. Forward-looking network analysis of ongoing sustainability transitions. Technological Forecasting and Social Change. 2020. 161. 120288. DOI: 10.1016/j.techfore.2020.120288
12. Zaręba A., Krzemińska A., Kozik R., Adynkiewicz-Piragas M., Kristiánová K. Passive and active solar systems in eco-architecture and eco-urban planning. Applied Sciences (Switzerland). 2022. 12 (6). 3095. DOI: 10.3390/app12063095
13. Самарин О.Д., Лушин К.И. Оценка влияния изменения климата на энергопотребление систем обеспечения микроклимата зданий // Жилищное строительство. 2020. № 1–2. С. 21–24. DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
13. Samarin O.D., Lushin K.I. Assessment of the impact of climate change on the energy efficiency of climate control systems of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
14. Aslam A., Rana I.A. The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Climate. 2022. Vol. 42. 101120. DOI: 10.1016/j.uclim.2022.101120

For citation: Sheina S.G., Umnyakova N.P., Girya L.V., Muhsen Murtada Dahir Muhsen. Energy sustainability in the life cycle of buildings in the regions of Iraq. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 50–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-50-55

Deformational Calculation of Cable-Stayed Structures of Sports Facilities Coverings

Number of journal: 10-2022
Autors:

Buzalo N.A.,
Ponomarev R.R.,
Smirnov V.A.

DOI: https://doi.org/10.31659/0044-4472-2022-10-46-49
УДК: 725.8

 

AbstractAbout AuthorsReferences
The significant role of the safe functioning of especially responsible facilities is noted. The theory of static calculation of geometrically nonlinear cable-stayed systems is considered. . The main content of the study is an analysis of the feasibility and prospects of using analytical and numerical methods of deformation calculation of hanging and cable-stayed systems. The basic matrix equation of calculation for a flat rod system of cable-stayed covering is given. The main software and computing complexes used for the design of large-span structures are described.
N.A. BUZALO1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
R.R. PONOMAREV1, Master, Postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.A. SMIRNOV2,3, Candidate of Sciences (Engineering)

1 South Russian State Polytechnic University named after M.I. Platov (132, Prosveshcheniya Street, Novocherkassk, 346428, Rostov Region, Russian Federation)
2 Researh Institute of Building Physics, Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy proezd, Moscow, 127238, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Bolotin V.V., Goldenblat I.I., Smirnov A.F. Stroitel’naya mekhanika. Sovremennoe sostoyanie i perspektivy razvitiya [Construction mechanics. The current state and prospects of development]. Moscow: Stroyizdat. 1972. 191 p.
2. Smirnov V.A. Visyachie mosty bol’shikh proletovm [Hanging bridges of large spans]. Moscow: Vysshaya shkola. 1975. 368 p.
3. Safronov V.S. Raschet visyachikh i vantovykh mostov na podvizhnuyu nagruzki [Calculation of suspension and cable-stayed bridges for mobile load]. Voronezh: Publishing House of Voronezh University. 1983. 196 p.
4. Ananyin A.I. Osnovnye uravneniya stroitel’noi mekhaniki v nelineinom raschete gibkoi niti. Sovremennye metody staticheskogo i dinamicheskogo rascheta sooruzhenii i konstruktsii [Basic equations of structural mechanics in nonlinear calculation of a flexible thread. Modern methods of static and dynamic calculation of structures and structures]. Voronezh: VGASA. 2002, pp. 69–75.
5. Chiras A.A. Stroitel’naya mekhanika. Teoriya i algoritmy [Construction mechanics. Theory and algorithms]. Moscow: Stroyizdat. 1989. 255 p.
6. Buzalo N.A., Durov I.S. Metodika deformatsionnogo rascheta visyachikh lineino-protyazhennykh sistem povyshennoi zhestkosti [Method of deformation calculation of hanging linear-extended systems of increased rigidity]. Novocherkassk: Novocherkasskiy polytechnicheskiy institute. 1986. 8 p.
7. Gotoh S. Solution of suspension bridge with irregular enclosed hangers. Proceedings symposium of High-Rise and Long-Spain Structures. 1964. Tokyo. 1965, pp. 67–79.
8. Perelmuter A.V., Slivker V.I. Raschetnye modeli sooruzhenii i vozmozhnost’ ikh analiza [Design models of structures and the possibility of their analysis]. Moscow: ASV. 2011. 736 p.
9. Kabantsev O.V., Karpilovsky V.S., Kriksunov E.S., Perelmuter A.V. Technology of calculated prediction of the stress-strain state of the structure taking into account the history of construction, loading and deformation. International Journal for Computational Civil and Structural Engineering. 2011. No. 7 (3), pp. 110–117.
10. Gorbushko M.A., Efremov I.M., Sidorov A.S., Smirnov S.A., Teplykh A.V. Engineering technologies for constructing computational models and analyzing results in the SCADOffice system: models of metal frames. CADMaster. 2006. No. 5, pp. 82–93.

For citation: Buzalo N.A., Ponomarev R.R., Smirnov V.A. Deformational calculation of cable-stayed structures of sports facilities coverings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 46–49. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-46-49

The Evolution of Sports and Entertainment Facilities of the XIX–XX Centuries: on the Example of Krasnodar

Number of journal: 10-2022
Autors:

Subbotin O.S.,
Morgacev P.A.

DOI: https://doi.org/10.31659/0044-4472-2022-10-40-45
УДК: 72.03:725.86(470.62)

 

AbstractAbout AuthorsReferences
The creative role of sport as an integral part of physical culture and a healthy lifestyle is revealed. The relevance of the research, which is of fundamental importance in the development of this culture, as well as the Olympic movement, is noted. A retrospective analysis of the origin and formation of sports and entertainment facilities in the historical context is carried out. The central attention is paid to sports facilities located on the territory of Krasnodar in various historical periods of the XIX–XX centuries. Individual structures with architectural characteristics, peculiar individual features in the urban environment of the studied city are presented. A special place belongs to the preservation of traditions and continuity in the architecture of sports and entertainment facilities in the dynamically developing environment of settlements of the Krasnodar Territory. The importance of creating a comfortable environment, landscaping in order to promote physical culture and active longevity is noted.
O.S. SUBBOTIN, Doctor of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.)
P.A. MORGACEV, Magister (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kuban State Agrarian University named after I.T. Trubilin (13, Kalinina Street, Krasnodar, 350044, Russian Federation)

1. Subbotin O.S. Innovative materials and technologies in the Olympic stadiums in Sochi. Zhilishnoe Stroitel’stvo [Housing Construction]. 2016. No. 8, pp.19–25. (In Russian).
2. Lisovskiy V.G. Arkhitektura Rossii XVIII – nachala XX veka. Poiski natsio-nal’nogo stilya [Architecture of Russia XVIII – early XX century. The search for national style]. Moscow: Beliy Gorod. 2009. 568 p. (In Russian).
3. Prina F. Arkhitektura: elementy, formy, materialy: entsiklopediya iskus-stva: per s ital’yanskogo [Architecture: elements, forms, materials: an encyclopedia of art: translated from Italian]. Moscow: Omega. 2010. 384 p. (In Russian).
4. Subbotin O.S. The most important stages of the development of the Kuban and the strategy of its development. Vestnik MGSU. 2011. No. 2–2, pp. 14–18. (In Russian).
5. Gorlova I.I., Manaenkov A.I., Lyakh V.I. Kul’tura Kubanskikh stanits 1794–1917 gg. [Culture of the Kuban villages 1794–1917]. Krasnodar: Yugnaya Zvezda. 1993. 129 p. (In Russian).
6. Subbotin O.S., Khritankov V.F. Effective use of energy-saving structures and materials in low-rise residential buildings. Zhilishnoe Stroitel’stvo [Housing Construction]. 2008. No. 12, pp. 20–23. (In Russian).
7. Yekaterinodar–Krasnodar: Dva veka goroda v datakh, sobytiyakh, vospominaniyakh...: materialy k Letopisi [Yekaterinodar–Krasnodar: Two centuries of the city in dates, events, memories ...: materials for the Chronicle]. Krasnodar, 1993. 800 p.
8. Lebedev YU.S. Arkhitektura i bionika [Architecture and bionics]. Moscow: Stroyizdat. 1977. 222 p.
9. Bussal’i M. Ponimat’ arkhitekturu: per s ital. M. Belyayevoy [Understand architecture: translated from Italian. M. Belyaeva]. Moscow: BMM. 2007. 384 p. (In Russian).
10. Subbotin O.S. Innovative materials and technologies in public buildings in Sochi. Zhilishnoe Stroitel’stvo [Housing Construction]. 2016. No. 11, pp. 29–34. (In Russian).
11. Fizkul’turno-sportivnyye sooruzheniya. Pod. red Aristovoy L.V. [Physical culture and sports facilities. Edited by L.V. Aristova] Moscow: SportAcadem-Press, 1999. 536 p. (In Russian).

For citation: Subbotin O.S., Morgacev P.A. The evolution of sports and entertainment facilities of the XIX–XX centuries: on the example of Krasnodar. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 40–45. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-40-45

Experimental Determination of the Duration of Insolation Using a Wide-Angle Lens and Solar Maps with Equidistant Projection

Number of journal: 10-2022
Autors:

Shmarov I.A.,
Zemtsov V.V.

DOI: https://doi.org/10.31659/0044-4472-2022-10-34-39
УДК: 628.972

 

AbstractAbout AuthorsReferences
It is shown that using the proposed method for measuring the duration of insolation, which is feasible at any time of the year, it is possible to determine the duration of insolation. The method uses a photograph of the light opening and the surrounding building, taken from the room under study using a wide-angle fisheye lens and a solar map with an equidistant projection for the geographical latitude of the construction site. The method is applicable to existing buildings in the absence of a situational or master plan, heights of opposing buildings, differences in ground level. The difference in experimental and traditional calculation methods for determining the duration of insolation may be no more than ±10 minutes. The calculation error by this method depends on the complex configurations of the superstructures on the roof and the architectural elements of the facades, the correct photograph of the window opening and the existing building, the quality of the picture taken.
I.A. SHMAROV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. ZEMTSOV, Engineer (zemсThis email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences(21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Shmarov I.A., Zemtsov V.A., Korkina E.V. Insolation: the practice of rationing and calculation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 7, pp. 48–53. (In Russian).
2. Shmarov I.A., Zemtsov V.A., Zemtsov V.V., Kozlov V.A. Updated methodology for calculating the duration of insolation of premises and territories according to insolation schedules. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 6, pp. 24–31. DOI: https://doi.org/10.31659/0044-4472-2018-6-24-31
3. Zemtsov V.A., Shmarov I.A., Zemtsov V.V., Kozlov V.A. Method of calculating the duration of insolation of premises of residential and public buildings and territories according to solar maps. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 7, pp. 32–37.
4. Shmarov I.A., Zemtsov V.A., Guskov A.S., Brazhnikova L.V. Indoor insolation as a means of limiting the spread of COVID-19, influenza and SARS in the urban environment. Academia. Architectura I Stroitelstvo. 2020. No. 4, pp. 83–92. (In Russian).
5. Korkina E.V., Shmarov I.A., Tyulenev M.D. Calculation of the coefficient taking into account the losses of solar radiation in the frames of window blocks. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 6, pp. 11–17. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-6-11-175

For citation: Shmarov I.A., Zemtsov V.V. Experimental determination of the duration of insolation using a wide-angle lens and solar maps with equidistant projection. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 34–39. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-34-39

Passive Methods of Mounting Elements of Volume-Block Housing Construction in Conditions of Limited Energy Resources

Number of journal: 10-2022
Autors:

Sychev S.A.,
Badin G.M.,
Abass Agadeer A.,
Al-Habeeb Ahmed A.

DOI: https://doi.org/10.31659/0044-4472-2022-10-27-32
УДК: 624.05

 

AbstractAbout AuthorsReferences
An innovative technology of passive assembly of prefabricated elements in the system of volume-block housing construction is proposed, which will make it possible to create a building with the maximum possible energy-efficient design due to using elements, such as hinges, to accelerate the installation of prefabricated elements. This technology can also solve a serious problem in the housing sector in countries such as Iraq, Syria, Iran. The results show that it is possible to reduce the number of technological processes in some cases by half, which leads to a reduction in labor costs and time. This method helps to speed up the process of installing elements on the construction site by reducing the number of operations. The installation method of the VBC construction system was developed with the aim of reducing energy costs and machine intensity, due to the use of passive mounting elements in the construction process.
S.A. SYCHEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
G.M. BADIN3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
ABASS Agadeer А.1,2, postgraduate (This email address is being protected from spambots. You need JavaScript enabled to view it.);
AL-HABEEB Ahmed A.1, postgraduate, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural Federal University named after the First President of Russia B.N. Yeltsin” (19, Mira Street, Yekaterinburg, Sverdlovsk oblast 620002, Russian Federation)
2 University of Diyala (Diyala city, 32001, Iraq)
3 Russian Academy of Architecture and Construction Sciences (19, Noviy Arbat Street, Moscow, 127025, Russian Federation)

1. Сычёв С.А. Оценка технологичности монтажа зданий и сооружений из модулей заводской готовности // Глобальный научный потенциал. 2015. № 9. С. 37–41.
1. Sychev S.A. Assessment of the manufacturability of installation of buildings and structures from factory-ready modules. Global’nyi nauchnyi potentsial. 2015. No. 9, pp. 37–41. (In Russian).
2. Waheeb R.A., Andersen B.S. Causes of Problems in Post-Disaster Emergency Re-Construction Projects–Iraq as a Case Study. Public Works Management & Policy. 2022. Vol. 27 (1), pp. 61–97. DOI: https://doi.org/10.1177/1087724X21990034
3. Сычёв С.А. Основы строительного производства и технические инновации. СПб.: СПбГАСУ, 2015. 147 с.
3. Sychev S.A. Osnovy stroitel’nogo proizvodstva i tekhnicheskie innovatsii: uchebnoe posobie [Fundamentals of construction production and technical innovations]. Saint Petrsburg: SPBGASU. 2015. 147 p.
4. Олейник П.П. Индустриально-мобильные методы возведения предприятий, зданий и сооружений. М.: АСВ, 2021. 488 с.
4. Oleinik P.P. Industrial’no-mobil’nye metody vozvedeniya predpriyatii, zdanii i sooruzhenii [Industrial-mobile methods of construction of enterprises, buildings and structures]. Moskow: ASV. 2021. 488 p.
5. Ибрагим И.Ф. Анализ конструктивных и организационно-технологических решений домостроения в Ираке и в России // Вестник науки и творчества. 2017. № 5 (31). С. 33–36.
5. Ibragim I.F. Analysis of constructive and organizational-technological solutions of housing construction in Iraq and in Russia. Vestnik Nauki i Tvorchestva. 2017. No. 5 (31), pp. 33–36. (In Russian).
6. Жигулина А.Ю., Мизюряев С.А. Объемно-блочное домостроение как вариант решения жилищной проблемы. В кн.: Традиции и инновации в строительстве и архитектуре. Строительные технологии. 2015. № 2. С. 124–128.
6. Zhigulina A.Yu., Mizyuryaev S.A. Ob»emno-blochnoe domostroenie kak variant resheniya zhilishchnoi problem. V kn.: Traditsii i innovatsii v stroitel’stve i arkhitekture. [Stroitel’nye tekhnologii. Volumetric-block housing construction as a solution to the housing problem. In the book: Traditions and Innovations in Construction and Architecture. Construction technologies]. 2015. No. 2, pp. 124–128. (In Russian).
7. Сычёв С.А. Технологические принципы ускоренного домостроения, перспектива автоматизированной и роботизированной сборки зданий // Промышленное и гражданское строительство. 2016. № 3. С. 66–70.
7. Sychev S.A. Technological principles of accelerated housing construction, the prospect of automated and robotic assembly of buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 3, pp. 66–70. (In Russian).
8. Navaratnam S., Ngo T., Gunawardena T., Henderson D. Performance review of prefabricated building systems and future research in Australia. Buildings. 2019. No. 2, p. 38. DOI: https://doi.org/10.3390/buildings9020038
9. Сычев С.А., Бадьин Г.М. Интерактивный строительный проект по методу настройки на основе BIM-технологий для скоростного модульного строительства // Архитектура и машиностроение. 2016. № 4. С. 36–41.
9. Sychev S.A., Bad’in G.M. Interactive construction project by the method of customization based on BIM technologies for high-speed modular construction. Arkhitektura i mashinostroenie. 2016. No. 4, pp. 36–41. (In Russian).
10. Matic D., Calzada J.R., Todorovic M.S., Eri´с M., Babin M. Cost-effective energy refurbishment of prefabricated buildings in Serbia. In cost-effective energy efficient building retrofitting. Woodhead Publishing. 2017. No. 10, pp. 455–487. DOI: https://doi.org/10.1016/B978-0-08-101128-7.00016-2.
11. Gunawardena T., Karunaratne R., Mendis P., Ngo T. Prefabricated construction technologies for the future of Sri Lanka’s construction industry. In Proceedings of the 7th International Conference on Sustainable Built Environment (ICSBE). Kandy, Sri Lanka. 2016, pp. 16–18.
12. Сычёв С.А., Бадьин Г.М. Технологии строительства и реконструкции энергоэффективных зданий. СПб.: БХВ-Петербург, 2017. 464 c.
12. Sychev S.A., Bad’in G.M. Tekhnologii stroitel’stva i rekonstruktsii ehnergoehffektivnykh zdanii [Technologies of construction and reconstruction of energy-efficient buildings]. Saint Petersburg: BHV-Peterburg. 2017. 464 p.
13. Вильман Ю.А. Совершенствование технологий сборки конструкций многоэтажных домов // Вестник ВолгГАСУ. 2013. № 4 (29). С. 21–27.
13. Vil’man Yu.A. Improvement of technologies for assembling structures of multi-storey buildings. Vestnik VolGGASU. 2013. No. 4 (29), pp. 21–27. (In Russian).
14. Gallo P., Romano R., Belardi E. Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies. Sustainability. 2021. No. 13 (9), p. 4701. DOI: https://doi.org/10.3390/su13094701

For citation: Sychev S.A., Badin G.M., Abass Agadeer A., Al-Habeeb Ahmed A. Passive methods of mounting elements of volume-block housing construction in conditions of limited energy resources. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 27–32. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-27-32

https://www.traditionrolex.com/11