Energy Sustainability in the Life Cycle of Buildings in the Regions of Iraq

Number of journal: 10-2022
Autors:

Sheina S.G.,
Umnyakova N.P.,
Girya L.V.,
Muhsen Murtada Dahir Muhsen

DOI: https://doi.org/10.31659/0044-4472-2022-10-50-55
УДК: 676.012.3

 

AbstractAbout AuthorsReferences
Modern energy trends in the construction sector are considered and its share in national energy consumption is estimated. It examines the prevailing patterns of energy use in the buildings sector, as well as ongoing efforts in Iraq to improve energy efficiency and sustainability. It presents a vision for 2030 for a significant increase in energy efficiency in the building sector, based on a realistic approach; potential goals for 2030 and 2050 are presented based on scenarios, implemented policies and programs. The analysis is carried out at the national, sub-regional and regional levels. This article assesses the benefits that can be gained from improving the energy efficiency of buildings in the regions of Iraq, looks at current trends in energy demand in the building sector in the Arab countries, and identifies the main factors affecting their consumption and efficiency of indicators in the specified sector in the regions of Iraq and includes a description of the current energy policy and the state of each country in order to assess the efforts of the region to promote energy efficiency and sustainability in buildings. The report uses an analytical approach to assess the potential for energy efficiency improvements in new and existing buildings to identify the benefits of a range of energy efficiency programs for regions of Iraq.
S.G. SHEINA1, Doctor of Sciences (Engineering);
N.P. UMNYAKOVA2,3, Doctor of Sciences (Engineering),
L.V. GIRYA1, Candidate of Sciences (Engineering),
MUHSEN Murtada Dahir Muhsen1, Graduate Student

1 Don State Technical University (1, Gagarin Square, Rostov-on-Don, 344000, Russian Federation)
2 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivny proezd, Moscow, 127238, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Schenone C., Delponte I. Renewable energy sources in local sustainable energy action PLANs (SEAPs): analysis and outcomes. Energy Policy. 2021. Vol. 156. 112475. DOI: 10.1016/j.enpol.2021.112475
2. Hosseini Haghighi S., de Uribarri P.M.Á., Padsala R., Eicker U. Characterizing and structuring urban GIS data for housing stock energy modelling and retrofitting. Energy and Buildings. 2022. Vol. 256. 111706. DOI: 10.1016/j.enbuild.2021.111706
3. Шеина С.Г., Умнякова Н.П., Гиря Л.В., Рожина М.А. Лучшие европейские практики в области энерго-сбережения при проектировании медицинских учреждений // Жилищное строительство. 2021. № 7. С. 3–7. DOI: https://doi.org/10.31659/0044-4472-2021-7-3-7
3. Sheina S.G., Umnyakova N.P., Girya L.V., Rozhina M.A. Best European practices in the field of energy saving when designing medical institutions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 7, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-7-3-7
4. Шеина С.Г., Умнякова Н.П., Федяева П.В., Миненко Е.Н. Лучший европейский опыт внедрения энергосберегающих технологий в жилищном фонде Российской Федерации // Жилищное строительство. 2020. № 6. С. 29–34. DOI: https://doi.org/10.31659/0044-4472-2020-6-29-34
4. Sheina S.G., Umnyakova N.P., Fedyaeva P.V., Minenko E.N. The best European experience in implementing energy-saving technologies in the housing stock of the Russian Federation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 29–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-29-34
5. Opportunity mapping for urban scale renewable energy generation. Renewable Energy. 2020. 162, рр. 779–787. DOI: 10.1016/j.renene.2020.08.060
6. Cheng W., Li D., Liu Z., Brown R.D. Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of the Total Environment. 2021. Vol. 799. 149417. DOI: 10.3390/en14248573
7. Beşikci D., Sulukan E., Uyar T.S. An urban techno-economic analysis and modelling for Turkey. Renewable Energy Focus. 2021. Vol. 38, рр. 1–8. DOI: 10.1016/j.ref.2021.05.003
8. Hosseinihaghighi S., Panchabikesan K., Dabirian  S., Ouf M., Eicker U. Discovering, processing and consolidating housing stock and smart thermostat data in support of energy end-use mapping and housing retrofit program planning. Sustainable Cities and Society. 2022. Vol. 78. 103640. DOI: 10.1016/j.scs.2021.103640
9. Ремизов А.Н., Егорьев П.О. Экоустойчивый взгляд на интеграцию инновационных технологий в строительстве // Жилищное строительство. 2019. № 5. С. 17–24. DOI: https://doi.org/10.31659/0044-4472-2019-4-17-24
9. Remizov A.N., Egoriev P.O. Eco-sustainable view on integration of innovation technologies in construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 5, pp. 17–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-4-17-24
10. Navarro-Espinosa A. Mina-Casaran J.D., Echeverry D.F., Lozano C.A. On the value of community association for microgrid development: Learnings from multiple deterministic and stochastic planning designs. Applied Sciences (Switzerland). 2021. Vol. 11 (14). 6257. DOI: 10.3390/app11146257
11. Matschoss K., Repo P. Forward-looking network analysis of ongoing sustainability transitions. Technological Forecasting and Social Change. 2020. 161. 120288. DOI: 10.1016/j.techfore.2020.120288
12. Zaręba A., Krzemińska A., Kozik R., Adynkiewicz-Piragas M., Kristiánová K. Passive and active solar systems in eco-architecture and eco-urban planning. Applied Sciences (Switzerland). 2022. 12 (6). 3095. DOI: 10.3390/app12063095
13. Самарин О.Д., Лушин К.И. Оценка влияния изменения климата на энергопотребление систем обеспечения микроклимата зданий // Жилищное строительство. 2020. № 1–2. С. 21–24. DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
13. Samarin O.D., Lushin K.I. Assessment of the impact of climate change on the energy efficiency of climate control systems of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
14. Aslam A., Rana I.A. The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Climate. 2022. Vol. 42. 101120. DOI: 10.1016/j.uclim.2022.101120

For citation: Sheina S.G., Umnyakova N.P., Girya L.V., Muhsen Murtada Dahir Muhsen. Energy sustainability in the life cycle of buildings in the regions of Iraq. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 50–55. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-50-55


Print   Email