Личный кабинет

Features of the Overhaul of the Thermal Protection of the Walls of Residential Panel Multi-Apartment Serial Houses

Number of journal: 12-2022
Autors:

Bodrov M.V.,
Morozov M.S.,
Ruin A.E.,
Pylaev A.N.

DOI: https://doi.org/10.31659/0044-4472-2022-12-80-84
УДК: 699.86

 

AbstractAbout AuthorsReferences
The typical Soviet panel construction of multi-apartment residential buildings occupies a high percentage of the total volume of the housing stock of the Russian Federation. According to the requirements of Federal Law No. 271-FZ of 12/25/2012, major repairs of common property in an apartment building include, among other things, work on the repair of facades, which in turn form the thermal envelope of the building. However, in the legislative framework for the overhaul of apartment buildings, there is no methodicality, consistency, concreteness in the choice of certain solutions and requirements concerning the repair of external enclosing structures, there is no consideration of the structural, geometric, climatic, economic components of the object and the region of construction, which in turn causes some uncertainty, ambiguity in making design decisions for contractors engaged in the repair of residential buildings. This, in turn, leads to the emergence of various final solutions for the repair of the thermal envelope of the building, which are not always economically justified, and sometimes even unprofitable. In this regard, it is necessary to conduct additional studies of the air-thermal regime of the existing panel housing stock when carrying out major repairs of the external thermal envelope in it.
M.V. BODROV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.S. MOROZOV, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.E. RUIN, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.N. PYLAEV, Graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Nizhny Novgorod State University of Architecture and Civil Engineering (65, bldg. 1 Ilinskaya Street., Nizhny Novgorod, 603950, Russian Federation)

1. Gagarin V.G., Dmitriev К.А. Consideration of thermal heterogeneities in the assessment of thermal protection of enclosing structures in Russia and European countries. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 14–16. (In Russian).
2. Dr. Wolfgang Feist. Wärmebrückenfreies Konstruieren. Protokollband Nr. 16 des Arbeitskreises kostengünstige Passivhäuser, 1. Auflage. Passivhaus Institut. Darmstadt. 1999.
3. Ovsyannikov S.N., Maksimov V.B. Energy-efficient exterior wall panels of frame-panel buildings. Vestnik TGASU. 2018. No. 6, pp. 107–114. (In Russian).
4. Elohov А. Methods and examples of calculation of thermal bridges. Stroitel’stvo i tehnogennaja bezopasnost’. 2015. No. 1 (53), pp. 86–93. (In Russian).
5. Tusnina О.А. Thermal engineering calculation of structures by numerical methods. Vestnik MGSU. 2013. No. 11, pp. 91–99. (In Russian).
6. Leshkevich V.V. Calculation of the temperature field and reduced heat transfer resistance of building enclosing structures using the finite element method. Sistemnyj analiz i prikladnaja informatika. 2015. No. 3, pp. 26–30. (In Russian).
7. Vyasova Т.О., Ovsyannikov S.N. The influence of volumetric heat-conducting inclusions on the calculation of the reduced heat transfer resistance of the enclosing structure. Vestnik TGASU. 2015. No. 2 (49), pp. 130–134. (In Russian).
8. Kozlov V.V., Tishner-Egorova Т.E.А. Mutual influence of point thermal inhomogeneities. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 6, pp. 45–47. (In Russian).
9. Kornienko S.V. Improving the energy efficiency of buildings by reducing heat loss through the edge zones of enclosing structures. Academia. Arhitektura i stroitel’stvo. 2010. No. 3, pp. 348–351. (In Russian).

For citation: Bodrov M.V., Morozov M.S., Ruin A.E., Pylaev A.N. Features of the overhaul of the thermal protection of the walls of residential panel multi-apartment serial houses. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 80–84. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-80-84

The Choice of Economically Feasible Thermal Protection of Buildings in the North of the Russian Federation

Number of journal: 12-2022
Autors:

Malyavina E.G.,
Frolova A.A.

DOI: https://doi.org/10.31659/0044-4472-2022-12-72-78
УДК: 699.86

 

AbstractAbout AuthorsReferences
It is shown that it is not enough to choose the level of thermal protection of enclosing structures only by energy indicators. For this, economic factors should be taken into account. To select an economically justified level of thermal protection, it is necessary to consider the energy costs for maintaining a year-round thermal microclimate in buildings, and not just during the heating season. In this case, it is necessary to take into account not only the cost of insulation and energy that replenishes the heat loss of the room, but all the financial components of capital and operating costs, which are affected by the thermal protection of the building. Appropriate level of thermal protection depends on the climatic characteristics of the construction area, taken into account in the form of degree-days of the heating period. But this is not enough, since the need for energy to maintain the thermal microclimate in the premises is influenced by the climatic characteristics of the warm period of the year. As it turned out, the appropriate level of thermal protection is also affected by the configuration of the building, which, in conjunction with thermal protection, is taken into account in the work using its specific thermal protection characteristic. Since there are areas in the Russian Federation with a different ratio of the duration of the heating and cooling periods and the configuration of buildings is individual in each case, the level of thermal protection of each building should be selected based on the basis of calculation.
Е.G. МALYAVINA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
А.А. FROLOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow State University of Civil Engineering (MGSU), (26 Yaroslavskoye Shosse, Moscow, Russia, 129337)

1. Sergeeva N.D., Kovalev S.A., Levkovich V.V. Methodology of organizational and technological preparation for the installation of energy-saving facade systems during the renovation of the housing stock. Moskovskii ekonomicheskii zhurnal. 2018. No. 1, pp. 195–204. (In Russian). DOI: 10.24411/2413-046Х-2018-11015
2. Srinivas Yelisetti, Vikash Kumar Saini, Rajesh Kumar, Ravita Lamba, Akash Saxena. Optimal energy management system for residential buildings considering the time of use price with swarm intelligence algorithms. Journal of Building Engineering. 2022. Vol. 59. (In Russian). DOI: https://doi.org/10.1016/j.jobe.2022.105062
3. Amin U., Hossain M. J., Fernandez E. Optimal price based control of HVAC systems in multizone office buildings for demand response. Journal of Cleaner Production. 2020. DOI: https://doi.org/10.1016/j.jclepro.2020.122059
4. Lapidus A.A., Zhunin A.A. Modeling and optimization of organizational and technological solutions in the construction of energy-efficient enclosing structures in civil engineering. Vestnik MGSU. 2016. No. 5, pp. 59–71. (In Russian).
5. Jiang Lu, Yucong Xue, Zhi Wang, Yifan Fan. Optimized mitigation of heat loss by avoiding wall-to-floor thermal bridges in reinforced concrete buildings. Journal of Building Engineering. 2020. Vol. 30. DOI: https://doi.org/10.1016/j.jobe.2020.101214
6. Dong Chen. Heat loss via concrete slab floors in Australian houses. Procedia Engineering. 2017. Vol. 205, pp. 108–115. DOI: https://doi.org/10.1016/j.proeng.2017.09.941
7. Livchak V. I., Gorshkov A. S. Justification of the values of the basic specific annual consumption of thermal energy for heating and ventilation of residential and public buildings for different regions of Russia. Inzhenernye sistemy. AVOK Severo-Zapad. 2018. No. 2. (In Russian).
8. Joe R. Zhao, Yizhou Sang, Jiaojiao Sun, Bin Chen, Xueyan Zhang, R.J. Kerekes. Approximate equations to estimate heat flow from floors to attain desired room temperatures in a simple house. Energy and Buildings. 2016. Vol. 133, pp. 541–546. DOI: https://doi.org/10.1016/j.enbuild.2016.10.015
9. Samarin O.D., Lushin K.I. Assessment of the impact of climate change on the energy consumption of building microclimate systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 21–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-1-2-21-24
10. Samarin O.D. Calculation of the cooling of the premises of the building in emergency conditions to ensure the reliability of their heat supply. Vestnik MGSU. 2019. Vol. 14, No. 4 (127), pp. 496–501. (In Russian).
11. Kuczyn´ski T., Staszczuk A. Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy. 2020. Vol. 195. DOI: https://doi.org/10.1016/j.energy.2020.116984
12. Kui Shan, Jiayuan Wang, Maomao Hu, Dian-ce Gao, A model-based control strategy to recover cooling energy from thermal mass in commercial buildings. Energy. 2019. Vol. 172, pp. 958–967. DOI: https://doi.org/10.1016/j.energy.2019.02.045.
13. Eugénio Rodrigues, Marco S. Fernandes, Adélio Rodrigues Gaspar, Álvaro Gomes, José J. Costa. Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass. Applied Energy. 2019. Vol. 252. DOI: https://doi.org/10.1016/j.apenergy.2019.113437
14. Livchak V.I. How to evaluate the energy efficiency of energy saving measures during the overhaul of apartment buildings. AVOK. 2017. No. 2, pp. 24–33. (In Russian).
15. Gagarin V.G. About energy consumption indicators. The quality of the indoor air and the environment. Materials of the XX International Scientific Conference. Moscow, 21–24.09.2022, pp. 24–30. (In Russian).
16. Tabunshchikov Yu.A. In search of truth. АВОК. 2014. No. 6, pp. 4–7. (In Russian).
17. Kovalev I.N., Tabunshchikov Yu.A. Features of optimizing the thickness of the insulation of the outer walls of buildings. System aspects. Energosberezhenie. 2017. No. 8, pp. 22–32. (In Russian).
18. Gagarin V.G. Methods of economic analysis of increasing the level of thermal protection of enclosing structures of buildings. АВОК. 2009. No. 1–3. (In Russian).
19. Livchak V.I. Proposals for standardizing the requirements for improving the energy efficiency of new construction buildings and the housing stock in Russia. Energosberezhenie. 2021. No. 7, pp. 20–27. (In Russian).
20. Malyavina E.G., Frolova A.A. Economic justification for the choice of thermal protection of office buildings. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2018. No. 9 (717), pp. 56–65. (In Russian).
21. Malyavina E.G., Frolova A.A. Influence of climatic features of the construction area on the economically advantageous level of thermal protection of office buildings. Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2020. No. 11 (743), pp. 89–99. (In Russian).
22. Samarskii A.A. Vvedenie v chislennye metody [Introduction to numerical methods]. Saint Petersburg: Lan’. 2005. 280 p.
23. Malyavina E.G., Frolova A.A. Analysis of annual energy consumption for heating and cooling of an office building. АВОК. 2017. No. 1, pp. 18–23. (In Russian).

For citation: Malyavina E.G., Frolova A.A. The choice of economically feasible thermal protection of buildings in the north of the Russian Federation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 72–78. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-72-78

Optimization of Public Service Time and Functional and Spatial Organizationof the Social Infrastructure of Residential Areas

Number of journal: 12-2022
Autors:

Shcherbina E.V.,
Kormina A.A.

DOI: https://doi.org/10.31659/0044-4472-2022-12-62-71
УДК: 338.49

 

AbstractAbout AuthorsReferences
Currently, the social requirements, conditions and standards that are implemented in residential area planning projects should be considered as a manifestation of general patterns that respond to the challenges of the modern stage of urban development of the city. The formation of social issues of the city’s residential environment occurs under the determining influence of the needs of the population living in residential neighborhoods, microdistricts and districts of the city. From the point of view of design solutions, the needs of the population are objectively determined by the need for certain processes (work, sleep, food, entertainment, etc.) and objects with which these processes can be implemented by architectural and urban planning means. To assess the possibility of meeting the needs of the population of residential areas, the article proposes a model of rational allocation of time spent on the provision of life-supporting and socially significant services. An assessment of the satisfaction of needs for the time budget and the frequency of demand for the service makes it possible to determine which part of the daily or weekly time budget is spent with the greatest efficiency and benefit. According to the proposed model, the criterion of rationality of the distribution of time of the population in the residential environment of the city can be a target function aimed at maximizing satisfaction by obtaining various kinds of services of daily, periodic or episodic demand. The planning aspect of the task of urban design of residential areas, taking into account the constantly changing estimates of time spent and the idea of the needs of the population and the means to meet them, is to saturate the territory with objects of various functional purposes and the synergy of all structures and spaces, which makes the living environment as a whole more comfortable.
E.V. SHСHERBINA, Doctor of Sciences (Engineering), Professor, Department of Urban Planning (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. KORMINA, Postgraduate, Department of Urban Planning (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Ptichnikova G.A. The space of a modern city as an expression of social processes (on «justice and injustice» of urban spaces). Sociologiya goroda. 2020. No. 2, pp. 5–16. (In Russian).
2. Ilyichev V.A., Emelyanov S.G., Kolchunov V.I. et al. Printsipy preobrazovaniya goroda v biosfersovmestimyi i razvivayushchii cheloveka [Principles of transformation of a city into a biosphere-compatible and developing person]. Moscow: ASV. 2015. 184 p.
3. Bakaeva N.V., Tchaikovsky L.V., Kormina A.A. Urban planning as a complex activity to create a socially oriented urban environment. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2019. No. 1(25), pp. 94–107. (In Russian).
4. Samoilov D.S. Sotsiologiya v gorodskom planirovanii [Sociology in urban planning]. Moscow. 1998. 97 p.
5. Reutov E.V. Urban space and social trust. Sociologiya goroda. 2018. No. 2, pp. 55–64. (In Russian).
6. Stolbov V.P., Starosta P.Yu. Sociology of the urban environment. Moscow: INFRA–M. 2017. 173 p.
7. Starikova M.M. The quality of the urban environment from the perspective of housing infrastructure of microdistricts (on the example of Kirov). Sociologiya goroda. 2018. No. 3, pp. 41–62. (In Russian).
8. Ilyichev V.A., Kolchunov V.I., Bakaeva N.V., Cher-nyaeva I.V. Quantitative assessment of the accessibility of infrastructure facilities in the implementation of the functions of a biosphere-compatible city. Stroitel’stvo i rekonstruktsiya. 2017. No. 2 (70), pp. 85–94. (In Russian).
9. Pilar Garcia-Almirall, Còssima Cornadó and Sara Vima-Grau. Residential vulnerability of barcelona: methodology integrating multi-criteria evaluation systems and geographic information systems. Sustainability. 2021. Vol. 13. 13659. https:// doi.org/10.3390/su132413659
10. Strashnova Yu.G., Strashnova L.F. Ways to improve the functional and spatial organization of the social infrastructure of Moscow. Vestnik MGSU. 2021. No. 16  (9), pp. 1136–1151. (In Russian).
11. Barsukova N.I., Zhukova I.V. Multifunctional complexes as one of the trends in the organization of a modern comfortable environment. Manuscript. 2021. Vol. 14. Iss. 11. 2446–2449. (In Russian).

For citation: Shcherbina E.V., Kormina A.A. Optimization of public service time and functional and spatial organization of the social Infrastructure of residential areas. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 62–71. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-62-71

Automation of the Choice of a Residential Building Construction Site on the Urban Development Plan

Number of journal: 12-2022
Autors:

Ayupov A.M.,
Borodkin K.Yu.,
Knyazeva N.V.

DOI: https://doi.org/10.31659/0044-4472-2022-12-57-61
УДК: 728.1

 

AbstractAbout AuthorsReferences
Choosing a construction site is a difficult task, when solving which it is necessary to take into account a large number of different conditions, and sorting and calculating a variety of options for the location of a new object is routine work with a large number of repetitive operations. Therefore, it is especially important to use automation tools that will reduce labor intensity and provide an opportunity to calculate a larger number of options and apply a variety of optimization criteria. The article is devoted to the creation of an algorithm that finds possible options and selects the most advantageous location of a future residential object on an urban development plan using the Grasshopper environment and data from QGIS. Such a tool can increase the efficiency of decision-making and reduce the complexity of work, it will be useful to designers, urban planners, architects to work out conceptual solutions for the development of territories for the purpose of preliminary calculations of technical and economic indicators.
A.M. AYUPOV1, Director (This email address is being protected from spambots. You need JavaScript enabled to view it.);
K.Yu. BORODKIN2, Magister (This email address is being protected from spambots. You need JavaScript enabled to view it.),
N.V. KNYAZEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Architectural Bureau MDLab (13 Industrialnoye Shosse, Ufa, 450027, Republic of Bashkortostan, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Sheina S., Shevtsova E., Sukhinin A., Priss E. The method of selecting an integrated development territory for the high-rise unique constructions. E3S Web of Conferences. Samara. 04–08.09.2017. Iss. 02064. DOI 10.1051/e3sconf/20183302064
2. Bolshakov N.S., Badenko V.L., A. Celani Site-selection on the basis of territorial analysis methods. Magazine of Civil Engineering. 2018. No. 5 (81),pp. 15–24. DOI 10.18720/MCE.81.2
3. Rosas-Chavoya M., Gallardo-Salazar J.L., López-Serrano P.M. QGIS a constantly growing free and open-source geospatial software contributing to scientific development. Cuadernos de Investigacion Geografica. 2022. Vol. 48. No. 1, pp. 197–213.DOI 10.18172/cig.5143
4. Федчун Д.О., Тлустый Р.Е. Сравнительный анализ методов параметрического, информационного и генеративного архитектурного проектирования // Вестник Инженерной школы Дальневосточного федерального университета. 2018. № 1 (34).С. 103–115. DOI 10.5281/zenodo.1196721
4. Fedchun D.O., Tlustyj R.E. Sravnitel’nyj analiz metodov parametricheskogo, informacionnogo i generativnogo arhitekturnogo proektirovaniya. Vestnik Inzhenernoj shkoly Dal’nevostochnogo federal’nogo universiteta. 2018. No. 1 (34), pp. 103–115. (In Russian). DOI 10.5281/zenodo.1196721
5. Эльшейх А.М. Оптимизация графика строительства на основе генетических алгоритмов // Современные проблемы науки и образования. 2015.№ 1–1. С. 123.
5. El’shejh A.M. Optimizaciya grafika stroitel’stva na osnove geneticheskih algoritmov. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–1, pp. 123. (In Russian).
6. Liu H., Jiang Yu. The parametric modeling of one heterotypic building basing on rhino and grasshopper. Новые идеи нового века: материалы международной научной конференции ФАД ТОГУ. 2017. Т. 2. С. 202–207.
6. Liu H., Jiang Yu. The parametric modeling of one heterotypic building basing on rhino and grasshopper. Novye idei novogo veka: materialy mezhdunarodnoj nauchnoj konferencii FAD TOGU. 2017. Vol. 2,pp. 202–207. (In Russian).
7. Mikhailov S., Mikhailova A., Nadyrshine N., Nadyrshine L. BIM-technologies and digital modeling in educational architectural design. IOP conference series: Materials Science and Engineering. Kazan. 29.04.2020. IOP Science. 012168.DOI 10.1088/1757-899X/890/1/012168
8. Князева Н.В. Использование эволюционных алгоритмов для автоматизации рутинных задач перебора вариантов проектных решений // Инженерно-строительный вестник Прикаспия. 2021.№ 3 (37). С. 73–77. DOI 10.52684/2312-3702-2021-37-3-73-77
8. Knyazeva N.V. Ispol’zovanie evolyucionnyh algoritmov dlya avtomatizacii rutinnyh zadach perebora variantov proektnyh reshenij. Inzhenerno-stroitel’nyj vestnik Prikaspiya. 2021. No. 3 (37), pp. 73–77.DOI 10.52684/2312-3702-2021-37-3-73-77
9. Knyazeva N., Larin V. Modeling of non-standard geometry of energy-efficient building facades. E3S Web of Conferences: 2018 Topical Problems of Architecture, Civil Engineering and Environmental Economics. TPACEE 2018. Moscow. 03–05.12.2018, pp. 05024. (In Russian). DOI 10.1051/e3sconf/20199105024
10. Салех М.С. Внедрение цифровых методов на различных этапах архитектурного проектирования // Архитектура и современные информационные технологии. 2021. № 1 (54). С. 268–278.DOI 10.24412/1998-4839-2021-1-268-278
10. Salekh M.S. Vnedrenie cifrovyh metodov na razlichnyh etapah arhitekturnogo proektirovaniya. Arhitektura i sovremennye informacionnye tekhnologii. 2021. No. 1 (54), pp. 268–278. (In Russian).DOI 10.24412/1998-4839-2021-1-268-278
11. Ozmen M., Sahin H. Real-time optimization of school bus routing problem in smart cities using genetic algorithm. Proceedings of the 6th International Conference on Inventive Computation Technologies, ICICT 2021: 6, Coimbatore, 20–22.01.2021. Coimbatore. 2021, pp. 1152–1158. DOI 10.1109/ICICT50816.2021.9358666
12. Клепка М.Г., Яблокова Е.А. Grasshopper – современный подход к проектированию жилых массивов. Дни науки студентов Владимирского государственного университета имени Александра Григорьевича и Николая Григорьевича Столетовых: Сборник материалов научно-практической конференции. Владимир. 21 марта 2022 года. С. 449–457.
12. Klepka M.G., Yаblokova E.A. Grasshopper – a modern approach to the design of residential areas. Science days of students of Vladimir State University named after Alexander Grigorievich and Nikolai Grigorievich Stoletov: Collection of materials from scientific and practical conferences. Vladimir, March 21 2022, pp. 449–457. (In Russian).
13. Саввина К.В. Применение языка визуального программирования Grasshopper для моделирования сложной геометрии в Autodesk Revit. Дни студенческой науки: Сборник докладов научно-технической конференции по итогам научно-исследовательских работ студентов института цифровых технологий и моделирования в строительстве (ИЦТМС) НИУ МГСУ. Москва. 28 февраля 2022 г. С. 335–338.
13. Savvina K.V. Application of the Grasshopper visual programming language for modeling complex geometry in Autodesk Revit. Days of Student Science: Collection of reports of the scientific and technical conference on the results of research work of students of the Institute of Digital Technologies and Modeling in Construction (ICTMS) NIA MGSU. Moscow. February 28 2022. Moskva: Nacional’nyj issledovatel’skij Moskovskij gosudarstvennyj stroitel’nyj universitet. 2022, pp. 335–338. (In Russian).
14. Бушминский К.И. Возможности применения инженерных расчетов в архитектурном проектировании с помощью плагина Grasshopper программы Rhinoceros. Наука, образование и экспериментальное проектирование в МАРХИ: Тезисы докладов международной научно-практической конференции профессорско-преподавательского состава, молодых ученых и студентов. Москва. 2–6 апреля 2018 г. С. 292.
14. Bushminskij K.I. Vozmozhnosti primeneniya inzhenernyh raschetov v arhitekturnom proektirovanii s pomoshch’yu plagina Grasshopper programmy Rhinoceros. Nauka, obrazovanie i eksperimental’noe proektirovanie v MARHI: Tezisy dokladov mezhdunarodnoj nauchno-prakticheskoj konferencii, professorsko-prepodavatel’skogo sostava, molodyh uchenyh i studentov. 02–06.04.2018. Moskva: Moskovskij arhitekturnyj institut (gosudarstvennaya akademiya). 2018, p. 292. (In Russian).
15. Ларин В.С., Клашанов Ф.К. Параметрическое моделирование в связке трех аппаратных комплексов ARCHICAD, Rhinoceros, Grasshopper // Студенческий. 2019. № 10 (54). С. 6–11.
15. Larin V.S., Klashanov F.K. Parametricheskoe modelirovanie v svyazke trekh apparatnyh kompleksov ­ARCHICAD, Rhinoceros, Grasshopper. Studencheskij. 2019. No. 10(54), pp. 6–11. (In Russian).

For citation: Ayupov A.M., Borodkin K.Yu., Knyazeva N.V. Automation of the choice of a residential building construction site on the urban development plan. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 57–61. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-57-61

Hydrophilicity, Biocorrosion of Structures of Wooden Architecture Monuments

Number of journal: 12-2022
Autors:

Pokrovskaya E.N.,
Pakhomov A.V.

DOI: https://doi.org/10.31659/0044-4472-2022-12-48-56
УДК: 20.193:674

 

AbstractAbout AuthorsReferences
The problem of preservation of monuments of wooden architecture is becoming more and more urgent over time. One of the main factors affecting the destruction of the wood of monuments are hydrophilicity, biocorrosion of structures. The purpose of the article is to study water absorption, structure, surface, mycological studies of wood monuments of various terms and conditions of operation. The purpose of the article is to study water absorption, structure, surface, ecological studies of monuments wood of various terms and conditions of operation. Samples of wood of wooden architecture monuments of various significance with a service life from 308 to 110 years have been studied. The samples were modified with a 30% solution of nitrilotrimethylphosphonic acid with the addition of 0.1% carbon nanotubes. Physical and chemical studies of wood samples of monuments of wooden architecture have been carried out. The dependence of the obtained results on the destruction of wood was revealed. Surface modification of samples reduces water absorption by 3–38% and significantly reduces the concentration of viable spores of biodestructive microorganisms. Physicochemical and mycological quantitative studies, IR Fourier spectroscopy, scanning electron microscopy together give a reasonable idea of the wood preservation and the possibility of its long-term operation.
E.N. POKROVSKAYA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. PAKHOMOV, graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Покровская Е.Н. Сохранение памятников деревянного зодчества с помощью элементоорганических соединений. Химико-физические основы увеличения долговечности древесины. М.: АСВ, 2009. 136 с.
1. Pokrovskaya E.N. Sokhranenie pamyatnikov derevyannogo zodchestva s pomoshchyu elementorganicheskikh soedineniy Khimiko-fizicheskie osnovy uvelicheniya dolgovechnosti drevesiny [Preservation of wooden architecture monuments using elementorganic compositions. Chemical and physical grounds for extension of wood durability]. Moscow: ASV. 2009. 136 p.
2. Perez J., Munoz-Dorado J., T. de la Rubia, Martinez J. Biodegradation and biological treatments of cellulose, hemicellulose and lignin an overview // Int. Microbiol. 2002. Vol. 5, pp. 53–63. DOI: 10.1007/s10123-002-0062-3
3. Чистов И.Н., Покровская Е.Н. Исследование древесины исторических памятников архитектуры методом ИК-спектроскопии // Вестник МГСУ. 2009. № 1. С. 455–457.
3. Chistov I.N., Pokrovskaya E.N. Research into wood of historical architectural monuments by means of infrared spectroscopy. Vestnik of MGSU. 2009. No. 1, pp. 455–457. (In Russian).
4. Покровская Е.Н., Ковальчук Ю.Л. Биокоррозия, сохранение памятников истории и архитектуры. М.: МГСУ, 2013. 212 с.
4. Pokrovskaya E.N., Kovalchuk Iu.L. Biokorroziya, sokhranenie pamyatnikov istorii i arkhitektury [Biocorrosion, preservation of historical and architectural monumnets]. Moscow: MGSU. 2013. 212 p.
5. Покровская Е.Н. Увеличение прочности частично разрушенной древесины памятников деревянного зодчества // Вестник МГСУ. 2018. Т. 13. Вып. 11. С. 1305–1314. DOI: 10.22227/1997-0935.2018.11.1305-1314
5. Pokrovskaya E.N. Increase in durability of partially destroyed wood of monuments of wooden architecture. Vestnik MGSU. 2018. Vol. 13. No. 11, pp. 1305–1314. (In Russian).
6. Покровская Е.Н., Ковальчук Ю.Л. Химико-микологические исследования древесины. Сборник трудов I Международной научн.-практ. конференции, г. Йошкар-Ола, 20–23 сент. 2016 г. Йошкар-Ола: ПГТУ, 2016. С. 16–19.
6. Pokrovskaya E.N., Kovalchuk Yu.L. Chemical and mycologic researches of wood. Proceedings of the International Conference. Yoshkar-Ola. Russia. 2016, pp. 16–19.(In Russian).
7. Bjordal C.G. Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage. 2012. Vol. 13. Iss. 3, pp. 118–122. https://doi.org/10.1016/j.culher.2012.02.003
8. Hongbo Yu, Fang Liu, Ming Ke, Xiaoyu Zhang. Thermogravimetric analysis and kinetic study of bamboo waste treated by Echinodontium taxodii using a modified three-parallel-reactions model. Bioresource Technology. 2015. Vol. 185, pp. 324–330.
9. Pokrovskaya E. Increasing the strength of destroyed wood of wooden architecture monuments by surface modification. MATEC Web of Conference. 251, 01034 IPICSE-2018.
10. Rabinovich M.L. Lignin by-products of Soviet hydrolysis industry: resources, characteristics, and utilization as a fuel. Cellulose Chemistry and Technology. 2014. No. 48 (7–8), pp. 613–631.

For citation: Pokrovskaya E.N., Pakhomov A.V. Hydrophilicity, biocorrosion of structures of wooden architecture monuments. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 48–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-48-56

Formation of Yemeni Traditional Architecture Depending on Climatic Regions

Number of journal: 12-2022
Autors:

Ahmed Hazaea A.O.,
Doroshenko A.V.,
Gryaznova V.V.

DOI: https://doi.org/10.31659/0044-4472-2022-12-39-47
УДК: 72.03

 

AbstractAbout AuthorsReferences
Yemen is one of the oldest hotbeds of civilization. The ancient architecture of Yemen, which has been preserved for centuries, is well reflected in several existing cities, some of which have been included in the UNESCO World Heritage List. The paper presents the results of a study of the influence of the environment on the formation of traditional Yemeni architecture and construction technology, as well as proposes a classification of Yemeni architecture depending on the climatic regions of the country. The environment has played an important role in defining the features of Yemen’s architecture. The variability of the relief led to a variety of materials and, consequently, to the creation of a variety of building methods and technologies and solutions used by people to achieve the best results, which contributed to the creation of the final image of Yemeni architecture. Comparing samples of Yemeni architecture, the uniqueness of the central highlands region is noted, in particular the sights of the city of Sana, which differ in their external decoration, and also have other characteristics when compared with the buildings of neighboring regions.
A.O. AHMED HAZAEA, Postgraduate Student,
A.V. DOROSHENKO, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. GRYAZNOVA, Student

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Shosse, Moscow, 129337, Russian Federation)

1. Atef Abdel Aziz. A variety of architectural styles in Yemen. Building World Magazine. 2002. No. 113.
2. Mohammed Hamoud Ahmed Kasem. Traditions and modernity in the architecture of urban housing in Yemen. Dis. cand. architecture. Saint Petersburg, 2003. 235 p.
3. Mamdouh Yakub. Traditional architecture in Shibam, Yemen. Building World Magazine. 1989. No. 101.
4. Gubran Abdulmalek, Salin Yakub, Kalugin A.N. Architecture of Yemeni cities in the context of national identity. Theoretical and practical aspects of the development of modern science: theory, methodology, practice: A collection of scientific articles based on the materials of the VII International Scientific and Practical Conference. Ufa. 2022. Vol. 1, pp. 86–95. (In Russian).
5. Al-Nahari Mohammed Hassan Ahmed Mohammed. Characteristics of clay architecture in ancient Shibam and Sanaa cities in Yemen. The concept of the accounting and tax system for the formation of the value of an innovative product: A collection of materials of the international scientific and practical conference. Orel. 2018. Vol. 1, pp. 171–175. (In Russian).
6. Abdo Isam I.A. The town of Staraya Sana is the oldest example of green architecture. Engineering Systems: Proceedings of the International Conference. Moscow. 2022. Vol. 1, pp. 211–222. (In Russian).
7. Al Baadani M. M. M., Yanushkina Yu. V. Actual problems of preservation of urban heritage in Arab countries (on the example of the Old City of Sanaa, Yemen). Bulletin of the Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture. 2022. Iss. 2 (87), pp. 208–217. (In Russian).
8. Myagkov M. S. Microclimate and bioclimatic comfort of traditional Arab buildings. Architecture and modern information technologies. 2019. No. 4 (49), pp. 235–261. (In Russian). DOI: 10.24411/1998-4839-2019-00017

For citation: Ahmed Hazaea A.O., Doroshenko A.V., Gryaznova V.V. Formation of Yemeni traditional architecture depending on climatic regions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 39–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-39-47

Features of Operation and Advantages of Piles with Widening Along the Body in Comparison with a Standard Bored Pile of Round Section

Number of journal: 12-2022
Autors:

Chunyuk D.Yu.,
Chan Van Hung,
Selviyan S.M.

DOI: https://doi.org/10.31659/0044-4472-2022-12-34-38
УДК: 624.154

 

AbstractAbout AuthorsReferences
The article is devoted to carrying out calculations to study the efficiency of bored piles with widening in conditions of a two-layer base and comparing the results obtained with the operation of traditional round-section bored piles. For this purpose, a calculation scheme has been developed in the Plaxis 3D software package and calculations for real engineering and geological conditions of the construction site in Vietnam are given. Based on the data obtained, the bearing capacity of a bored pile with a broadening along the body was determined and compared with a round-section bored pile. In the article, the authors not only analyze the results obtained in the software package, but also describe the structures of the bored pile with broadening along the body. The applicability of this type of piles and the method of their manufacture are also considered in detail. Schemes of the device of the shell module of the bored pile with broadening along the body are given. Four stages are described for the installation of these piles. The necessary equipment is considered and a model of concrete construction equipment for the installation of a bored pile with broadening is shown. The table of maximum bearing capacity, obtained in the Plaxis 3D software package, and design schemes for two options are given: for a pile of circular section and a pile with widening. Based on the data obtained, graphs of the dependence of the pile precipitation on the load are built. In the analyses and the results in tabular form, a comparison of the obtained values was carried out. The conclusions show the advantages of using this type of piles and the need for further research in this direction.
D.Yu. CHUNYUK1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
CHAN VAN HUNG1,2, Postgraduate;
S.M. SELVIYAN1, Postgraduate(This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 College of Industry and Construction (Socialist Republic of Vietnam, Quang Ninh Province, Wang Bi)

1. Zertsalov M.G., Znamensky V.V., Khokhlov I.N. On the peculiarities of calculating the bearing capacity of bored piles in rock massifs under the action of vertical load. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2018. No. 1, pp. 52–59. (In Russian).
2. Nikitenko M.I., Moradi S.B., Chernoshey N.V. Methods for determining the bearing capacity of bored piles by SFA technology. Stroitel’naya nauka i tekhnika. 2011. No. 1, pp. 43–49.
3. Tao W. A. N. G. and Ma Ye. Study on over-length drilled pile bearing behavior under vertical load. Rock and Soil Mechanics. 2005. № 7, pp. 1053–1057.
4. Sokolov N.S. Technology of increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
5. Leontiev A., Maltsev A.V., Isaev V.I. Development of an effective way to increase the bearing capacity of a bored pile. Traditsii i innovatsii v stroitel’stve i arkhitekture. Ctroitel’stvo. 2016. No. 10, pp. 206–210. (In Russian).
6. Sokolov N.S. The foundation of increased load-bearing capacity using drilling-injection piles of ERT with multi-seat extensions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 9, pp. 25–27. (In Russian).
7. Aleksashina V.V., Le Minh Tuan. The influence of the heat island effect on the ecology of a megalopolis. Problemy regional’noi ekologii. 2018. No. 5. (In Russian). DOI: 10.24411/1728-323X-2019-15036
8. Le Minh Tuan. The influence of the city layout on the emergence of heat islands in megacities with a tropical climate (Hanoi). Vestnik MGSU. 2019. Vol. 14. Iss. 2, pp. 148–157. (In Russian). DOI: 10.22227/1997-0935.2019.2.148-157

For citation: Chunyuk D.Yu., Chan Van Hung, Selviyan S.M. Features of operation and advantages of piles with widening along the body in comparison with a standard bored pile of round section. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 34–38. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-34-38

Features of Modeling the Operation of the Base under Dynamic Loads During the Operation of the Subway

Number of journal: 12-2022
Autors:

Ter-Martirosyan A.Z.,
Sidorov V.V.

DOI: https://doi.org/10.31659/0044-4472-2022-12-26-33
УДК: 625.42

 

AbstractAbout AuthorsReferences
In the practice of designing underground structures for transport purposes, it is often necessary to determine the most appropriate methods for modeling the transport load on the soil base from the operation of the underground interstation subway tunnels. To do this, it is necessary to choose methods for determining the dynamic parameters of the base soils and determine their influence on the obtained modeling results, determine the correct geometric parameters of the calculation models for solving the groups of problems considered. The main method of the work performed is numerical modeling with the implementation of test tasks with the application of a moving load (with simpler geological conditions and model elements) to identify the most significant parameters affecting the result. The applied dynamic parameters of the base soils were determined using a triaxial device with the ability to set dynamic loads, as well as using a resonant column. The paper compares direct calculations using traditional data from engineering and geological survey, as well as those carried out with a special set of dynamic parameters determined in the laboratory. It is noted that the application of traditional results of engineering-geological surveys is incorrect and gives overestimated values of additional displacements of structures within the zone of influence of dynamic impact from a moving train. The calculations performed show a significant influence of all considered parameters on the final results of the calculation. The use of parameter sets for modern soil models in the calculation showed that the model with increasing stiffness, taking into account small deformations (Hardening Soil small, hereinafter referred to as HSS) provides minimal additional displacements of gateway structures with minimal vibration amplitudes. The use of damping parameters in the form of the mass proportionality coefficient and the stiffness proportionality coefficient in the calculations showed a strong influence on the calculation result, determining a decrease in the amplitude of vibrations during dynamic impact and an increase in the rate of damping of vibrations during the period of free oscillations after the transport passage.
A.Z. TER-MARTIROSYAN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. SIDOROV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Seed H.B., Idriss I.M. Simplified procedures for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundation Engineering. 1971. Vol. 97, pp. 1249–1273.
2. Фадеев А.Б., Лисюк М.Б., Ишихара К. Поведение грунтов при землетрясениях / Пер. с англ. СПб.: НПО «Геореконструкция-Фундаментпроект», 2006. 384 с.
2. Fadeev A.B., Lisyuk M.B. Ishihara K. Povedenie gruntov pri zemletryaseniyah: Perevod s anglijskogo [Behavior of soils during earthquakes: translation from English]. Saint-Petersburg: NPO «Georekonstrukciya-Fundamentproekt». 2006. 384 p.
3. Вознесенский Е.А. Динамическая неустойчивость грунтов. М.: Эдиториал УРСС, 1999. 263 с.
3. Voznesenskiy E.A. Dinamicheskaya neustojchivost’ gruntov [Dynamic instability of soils]. Moscow: Editorial URSS. 1999. 263 p.
4. Ставницер Л.Р. Сейсмостойкость оснований и фундаментов. М.: АСВ, 2010. 447 с.
4. Stavnicer L.R. Sejsmostojkost’ osnovanij i fundamentov [Seismic resistance of bases and foundations]. Moscow: ASV. 2010. 447 p.
5. Болдырев Г.Г. Методы определения динамических свойств грунтов с комментариями к ГОСТ 12248–2010. Пенза: Прондо, 2014. 811 с.
5. Boldyrev G.G. Metody opredeleniya dinamicheskih svojstv gruntov s kommentariyami k GOST 12248–2010 [Methods for determining the dynamic properties of soils with comments to GOST 12248–2010]. Penza: Prondo. 2014. 811 p.
6. Гусев Г.Н., Епин В.В. Моделирование вибрационного воздействия от транспортной нагрузки на жилое здание. Численная модель, натурный эксперимент // Научно-технический вестник Поволжья. 2019. № 12. С. 188–190.
6. Gusev G.N., Epin V.V. Modeling of vibration impact from traffic load on a residential building. Numerical model, natural experiment. Nauchno-tekhnicheskij vestnik Povolzh’ya. 2019. No. 12, pp. 188–190. (In Russian).
7. Алексиков С.В., Лескин А.И., Гофман Д.И., Глазунов И.И. Влияние жесткости основания на напряжения в конструктивных слоях дорожной одежды // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2021. № 4 (85) С. 97–105.
7. Aleksikov S.V., Leskin A.I., Gofman D.I., Glazunov I.I. Influence of Foundation Rigidity on Stresses in Structural Layers of Pavement. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arhitektura. 2021. No. 4 (85), pp. 97–105. (In Russian).
8. Мондрус В.Л., Митрошин В.А. Воздействие движения поездов метрополитена неглубокого заложения на городскую застройку // Промышленное и гражданское строительство. 2020. № 9. С. 14–20.
8. Mondrus V.L., Mitroshin V.A. The impact of shallow subway train traffic on urban development. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. No. 9, pp. 14–20. (In Russian).
9. Panji M., Ansari B. Anti-pane seismic ground motion above twin horsehoe-shaped lined tunnels. Innovative infrastructure solutions. 2020. Vol. 5. No. 7. https://doi.org/10.1007/s41062-019-0257-5
10. Indraratna B., Sajjad M.B., Ngo T., Correia A.G., Kelly R. Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches. Transportation geotechnics. 2019. Vol. 21, pp. 100260. DOI: 10.1016/j.trgeo.2019.100260
11. Shamsi M., Ghanbari A. Nonlinear dynamic analysis of Qom Monorail Bridge considering soil-pile-train interaction. Transportation geotechnics. 2020. Vol. 22, pp. 100309. DOI: 10.1016/j.trgeo.2019.100309
12. Connolly D.P., Costa P.A. Geodynamics of very high speed transport systems. Soil dynamics and earthquake engineering. 2020. Vol. 130, pp. 105982. DOI: 10.1016/j.soildyn.2019.105982
13. Lovska A., Fomin O., Pistek V., Kucera P. Dynamic load modelling within combined transport trains during transportation on a railway ferry. Applied science-basel. 2020. Vol. 10 (16), pp. 5710. DOI: 10.3390/app10165710
14. Chen J., Zhou Y. Dynamic vertical displacement for ballastless track-subgrade system under high-speed train moving loads. Soil dynamics and earthquake engineering. 2020. Vol. 129, pp. 105911. DOI: 10.1016/j.soildyn.2019.105911
15. Fu Q., Wu Y. Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads. Geomechanics and engineering. 2019. Vol. 19 (3), pp. 241–254. DOI: 10.12989/gae.2019.19.3.241
16. Wang H. and Chen R. Estimating static and dynamic stresses in geosynthetic-reinforced pile-supported track-bed under train moving loads. Journal of geotechnical and environmental engineering. 2019. Vol. 145(7). 04019029. DOI: 10.1061/(ASCE)GT.1943-5606.0002056
17. Yang C., Yan C., Qu L., Ding X., Liu W. Experimental and numerical studies on vibration characteristics of railway embankment. Journal of Central South University. 2022. Vol. 29. Iss. 5, pp. 1641–1652. DOI: 10.1007/s11771-022-5030-9
18. Xie W., Gao G., Song J. Wang Y. Ground vibration analysis under combined seismic and high-speed train loads. Underground Space (China). 2022. Vol. 7. Iss. 3, pp. 363–379. DOI: 10.1016/j.undsp.2021.10.001
19. Gao G., Zhang J., Chen J., Bi J. Investigation of saturation effects on vibrations of nearly saturated ground due to moving train loads using 2,5D FEM. Soil Dynamics and Earthquake Engineering. 2022. Vol. 158. 107288. DOI: 10.1016/j.soildyn.2022.107288
20. Mandhaniya P., Shahu J. Chandra S. Numerical analysis on combinations of geosynthetically reinforced earth foundations for high-speed rail transportation. Structures. 2022. Vol. 43, pp. 738–751. DOI: 10.1016/j.istruc.2022.07.003
21. Bettinelli L., Glatz B., Stollwitzer A., Fink J. Comparison of different approaches for considering vehicle-bridge-interaction in dynamic calculations of high-speed railway bridges. Engineering Structures. 2022. Vol. 270. 114897. DOI: 10.1016/j.engstruct.2022.114897

For citation: Ter-Martirosyan A.Z., Sidorov V.V. Features of modeling the operation of the base under dynamic loads during the operation of the subway. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 26–33. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-26-33

Modeling of Non-Uniform Deformations of the Base of Foundations in Complex Engineering and Geological Conditions

Number of journal: 12-2022
Autors:

Yarkin V.V.,
Lobacheva N.G.

DOI: https://doi.org/10.31659/0044-4472-2022-12-15-25
УДК: 624.15

 

AbstractAbout AuthorsReferences
When calculating buildings and structures interacting with an unevenly deformable base, the features of modeling uneven deformations of the base are influenced not so much by the causes of their occurrence as by their dependence on the external load on the base. Methods for determining uneven deformations of the base in complex engineering and geological conditions are considered. The methods can be divided into analytical and numerical. Analytical methods include: determination of extreme displacement or deformation at any characteristic point of the base with subsequent linear or non-linear approximation of the patterns of deformation of the base in the vicinity of the above point; determination of displacements or deformations in a number of points of the base, taking into account the heterogeneity of the geological structure, stress distribution fields, humidity and temperature. Of the existing numerical methods, the finite element method has received the greatest popularity. The disadvantages of numerical methods include certain difficulties in taking into account the special properties of soils, as well as displacements that do not depend on the external load on the foundation. The possibilities of the software for determining the rigidity characteristics of the base in the system “base – foundation – structure” are presented, taking into account deformations caused by: partial distributive capacity of the soil, shear and deconsolidation of the soil, heterogeneity of the soil mass in plan and depth, special properties of the soil, local soaking and underworking. It is shown that the development of software for determining non-uniform deformations of the base caused by complex engineering and geological conditions, using proven analytical methods of calculation and subsequent transfer of the results to design computer-aided design systems, is still relevant.
V.V. YARKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.G. LOBACHEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Donbas National Academy of Civil Engineering and Architecture (2 Derzhavina Street, Makeevka, 86123, Donetsk People’s Republic)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Garagash B.A. Nadezhnost’ prostranstvennykh reguliruemykh sistem «osnovanie-sooruzhenie» pri neravnomernykh deformatsiyakh osnovaniya [Reliability of spatial adjustable systems “base-structure” with uneven deformations of the base]. Vol. I. Moscow: ASV. 2012. 416 p.
2. Garagash B.A. Nadezhnost’ prostranstvennykh reguliruemykh sistem «osnovanie-sooruzhenie» pri neravnomernykh deformatsiyakh osnovaniya [Reliability of spatial adjustable systems “base-structure” with uneven deformations of the base]. Vol. II. Moscow: ASV. 2012. 472 p.
3. Nuzhdin L.V., Mikhaylov V.S. Numerical modeling of pile foundations in the structural analysis software SCAD Office. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2018. No. 1, pp. 5–18. (In Russian). DOI: 10.15593/2224-9826/2018.1.01
4. Lobacheva N., Griniov V. Comparative analysis of calculations of strip foundation, taking into account the influence of adjoined building with different soil models. XXII International Scientific Conference «Construction the Formation of Living Environment» (FORM-2019). Moscow. 2019. Vol. 97, 04006 DOI: https://doi.org/10.1051/e3sconf/20199704006
5. Igosheva L.A., Kleveko V.I. Comparison of the results of determination of vertical settlement of a strip foundation of a analytical method and the finite element method in plane and dimensional tasks. Transport. Transportnye sooruzheniya. Ekologiya. 2014. No. 3, pp. 74–86. (In Russian).
6. Strokova L.A., Tarek S.S.T., Golubeva V.V., Ivanov V. Numerical modeling of influence of soil mass reinforcement with cement-sand grouting on foundation deformation. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017. Vol. 328. No. 10, pp. 6–17. (In Russian).
7. Egorova E.S., Ioskevich А. ., Ioskevich V.V., Agishev K.N., Kozhevnikov V.Yu. Soil model implemented in the software packages SCAD Office and Plaxis 3D. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2016. No. 3, pp. 31. (In Russian).
8. Peng W. et al. A two-pile foundation model in sloping ground by finite beam element method. Computers and Geotechnics. 2020. Vol. 122. 103503. DOI: https://doi.org/10.1016/j.compgeo.2020.103503
9. Ter-Martirosyan A.Z, Mirnyy A.Yu., Sobolev E.S. Peculiarities of determining parameters of contemporary soil models by laboratory tests. Geotekhnika. 2016. No. 1, pp. 66–72. (In Russian).
10. Kalugina Ju.A., Keck D., Pronozin Ya.A. Determination of soil deformation moduli after National Building Codes of Russia and Germany. Inzhenerno-stroitel’nyi zhurnal. 2017. No. 7 (75), pp. 139–149. (In Russian). DOI: 10.18720/MCE.75.14
11. Antonov V.M., Ledenev V.V., Skrylev V.I. Proektirovanie zdanii v osobykh usloviyakh stroitel’stva i ehkspluatatsii [Design of buildings in special conditions of construction and exploitation]. Tambov: Izd-vo TGTU. 2002. 240 p.
12. Kushner S.G. Raschet deformatsii osnovanii zdanii i sooruzhenii [Calculation of deformations bases of buildings and structures]. Zaporozh’e: OOO “IPO Zaporozh’e”. 2008. 496 p.
13. SP 22.13330.2016. Soil bases of buildings and structures. Updated edition SNiP 2.02.01–83*. Moscow. 2016. 220 p. (In Russian).
14. Ledenev V.V. Osnovaniya i fundamenty pri slozhnykh silovykh vozdeistviyakh (opyty) [Bases and foundations under complex force influences (experiments)]. Vol. 3. Tambov: Izd-vo FGBOU VO «TGTU». 2017. 400 p.
15. Mangushev R.A., Karlov V.D., Sakharov I.I., Osokin A.I. Osnovaniya i fundamenty [Bases and foundations]. Moscow: ASV. 2011. 394 p.
16. Maskaleva V.V., Mukhamadiev V.R. Features of the weak clay soils. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2014. No. 6, pp. 104–119. (In Russian).
17. Kudasheva M.I., Kaloshina S.V. Parameters of hardening soil model in the software package Plaxis. Khimiya. Ehkologiya. Urbanistika. 2017. Vol. 1, pp. 261–265. (In Russian).
18. Matselya V.I. Comparative analysis of the parameters of finite-element models of soils obtained by numerical methods. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universitetа. 2017. No. 1 (63), pp. 23–31. (In Russian).
19. Gorodetskii D.A., Barabash M.S., Vodop’yanov R.YU. i dr. Programmnyi kompleks Lira-SAPR 2013. Uchebnoe posobie [The Lira-SAPR 2013 software package. Study guide]. Kiev – Moscow: Ehlektronnoe izdanie. 2013. 376 p.
20. Genzerskii Yu.V., Kutsenko A.N., Marchenko D.V. i dr. LIRA 9.4. Primery rascheta i proektirovaniya. Prilozhenie k posobiyu LIRA 9.2 [LIRA 9.4. Examples of calculation and design. Appendix to the LIRA 9.2 Manual]. Kiev: NIIASS. 2006. 124 p.
21. Perel’muter A.V., Slivker V.I. Raschetnye modeli sooruzhenii i vozmozhnost’ ikh analiza [Design models of structures and the possibility of their analysis]. Moscow: SKAD SOFT. 2011. 736 p.
22. Tikhonyuk I., Kanev D., Kolesnikov A. The use of BIM technologies in the calculation of buildings in a complex geotechnical environment in conjunction with Revit, LIRA 10.6 and PLAXIS 3D programs. The website of the LIRA soft company. 2017. https://lira-soft.com/wiki/articles/primenenie-tekhnologiy-bim-pri-raschete-zdaniy-v-usloviyakh-slozhnoy-geotekhnicheskoy-obstanovki-s-p/ (Date of access 1.12.2022). (In Russian).
23. Sidorov V.N., Vershinin V.V. Metod konechnykh ehlementov v raschete sooruzhenii. Teoriya, algoritm, primery raschetov v programmnom komplekse SIMULIA Abaqus [The finite element method in the calculation of structures. Theory, algorithm, examples of calculations in the SIMULIA Abaqus software package]. Moscow: ASV. 2015. 288 p.
24. Yarkin V., Kukhar A. Determination of non-uniform settlements caused by decompression of soil in the excavation. International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018). Saint-Petersburg. 2018. Vol. 245. 08002. DOI: https://doi.org/10.1051/matecconf/201824508002
25. Fuentes R. Influence of corners in excavations on damage assessment. Geotechnical Research. 2019. No. 6 (2), pp. 91–102. DOI: https://doi.org/10.1680/jgere.18.00017
26. Shulyat’ev O.A. Osnovaniya i fundamenty vysotnykh zdanii [Bases and foundations of high-rise buildings]. Moscow: ASV. 2016. 392 p.
27. Klepikov S.N. Raschet sooruzhenii na deformiruemom osnovanii [Calculation of structures on a deformable base]. Kiev: NIISK. 1996. 204 p.
28. Ulitskii V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical support of urban development]. Saint-Petersburg: “Stroiizdat Severo-Zapad”, Gruppa kompanii “Georekonstruktsiya”. 2010. 551 p.
29. Melnikov R.V., Sagitova R.H. Calibration of “Hardening Soil” model parameters according to the results of laboratory testing in program “SoilTest”. Akademicheskii vestnik UraLNIIproekt RAASN. 2016. No. 3 (30), pp. 79–83. (In Russian).
30. Yarkin V., Kukhar H., Lobacheva N. Non-linear settlements of shallow foundation. XXII International Scientific Conference «Construction the Formation of Living Environment» (FORM-2019). Moscow. 2019. Vol. 97. 04034. DOI: https://doi.org/10.1051/e3sconf/20199704034
31. Mangushev R.A., Nikiforova N.S. Tekhnologicheskie osadki zdanii i sooruzhenii v zone vliyaniya podzemnogo stroitel’stva [Technological settlements of buildings and structures in the zone of influence of underground construction]. Moscow: ASV. 2017. 168 p.
32. Yarkin V.V. Modelirovanie sistemy «Osnovanie – fundament – sooruzhenie» v slozhnykh inzhenerno-geologicheskikh usloviyakh: monografiya [Modeling of the “Bases – foundation – structure” system in difficult engineering and geological conditions: monograph.]. Makeevka: Donbasskaya natsional’naya akademiya stroitel’stva i arkhitektury, EHBS ASV. 2020. 392 p. https://www.iprbookshop.ru/93864.html (Date of access 01.12.2022).
33. Robertson P., Cabal C. Guide to cone penetration testing for geotechnical engineering. California, USA: Greg Drillings & Testing, 2015. 143 p.
34. Ter-Martirosyan A.Z., Mirnyi A.Yu., Sidorov V.V., Sobolev E.S. Determination the parameters the Hardening Soil model based on the results of laboratory tests. Geotekhnika. Teoriya i praktika. Mezhvuzovskii tematicheskii sbornik trudov. Saint-Petersburg. 2013. Vol. 1, pp. 141–146. (In Russian).
35. Orekhov V.V. On the calculation of the bases by deformations by numerical methods. Osnovaniya, fundamenty i mekhanika gruntov. 2016. No. 1, pp. 2–4. (In Russian).
36. Ter-Martirosyan A.Z., Sidorov V.V., Ermoshina L.Yu. Determination and verification of parameters of the soft soil model with account for creep. Vestnik MGSU. 2018. Vol. 13. No. 6 (117), pp. 697–708. (In Russian). DOI: 10.22227/1997-0935.2018.6.697-708

For citation: Yarkin V.V., Lobacheva N.G. Modeling of non-uniform deformations of the base of foundations in complex engineering and geological conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 15–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-15-25

Gas-Dynamic Approach to the Calculation of an Underground Structure for the Impact of an Air Shock Wave

Number of journal: 12-2022
Autors:

Mkrtychev O.V.,
Savenkov A.Yu.

DOI: https://doi.org/10.31659/0044-4472-2022-12-8-14
УДК: 69.035.4

 

AbstractAbout AuthorsReferences
The calculation of buried underground structures designed to protect the population from natural and man-made emergencies must be performed for the impact of a compression wave in the ground induced by an air shock wave. The normative method of calculating underground structures for the impact of shock waves is an equivalent static method based on the use of the dynamicity coefficient. This approach has a number of significant disadvantages due to the fact that it does not take into account the inertial parameters of the impact and is used for simple forms of structures. Despite the fact that this method makes it possible to set the load in the form of pressure graphs over time, it requires clarification, since the process of interaction of waves with an underground structure is complex and a more rigorous formulation is needed to obtain a more adequate result, based on taking into account the features of the interaction of a shock wave with an underground structure. One of the more rigorous approaches is the use of the gas-dynamic method based on the description of the explosion process in air and in the ground using the Euler approach. The problem of the interaction of an air shock wave with a free-standing buried underground structure in a nonlinear dynamic formulation is solved. The results of the calculations show that the developed method, based on the use of the gas-dynamic approach, makes it possible to perform calculations of underground structures for the impact of shock waves in a more rigorous setting, taking into account the use of mathematical soil models that allow the most accurate reproduction of the dynamic behavior of dense and water-saturated soils. The results of calculations show that the developed technique based on the use of the gas-dynamic approach makes it possible to performing calculations of underground structures for the impact of shock waves in a more rigorous formulation, taking into account the use of mathematical models of soils that allow the most accurate reproduction of the dynamic behavior of dense and water-saturated soils.
O.V. MKRTYCHEV, Doctor of Sciences (Engineering),
A.Yu. SAVENKOV, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Andreev S.G., Babkin A.V., Baum F.A., Imhovik N.A. et al. Fizika vzryva [Physics of a Blas]. Vol. 2. Moscow: Fizmatlit. 2004. 832 p.
2. Rastorguev B.S., Plotnikov A.I., Khusnutdinov D.Z. Proektirovanie zdaniy i sooruzheniy pri avariynykh vzryvnykh vozdeystviyakh [Design of buildings and structures exposed to emergency blast effects]. Moscow: ASV. 2007. 152 p.
3. Korenev B.G., Rabinovich I.M. Dinamicheskii raschet sooruzhenii na spetsial’nye vozdeistviya [Dynamic calculation of equipment for special effects]. Mosсow: Stroyizdat. 1981. 155 p.
4. Popov N.N., Rastorguyev B.S. Dinamicheskii raschet zhelezobetonnykh konstruktsii [Dynamic analysis of reinforced concrete structures]. Mosсow: Stroyizdat. 1974. 220 p.
5. Kotlyarevskiy V.A., Ganushkin V.I., Kostin A.A., Kostin A.I., Larionov V.I. Ubezhishcha grazhdanskoi oborony. Konstruktsii i raschet [Civil defense shelters. Designs and calculation]. Mosсow: Stroyizdat. 1989. 606 p.
6. Kelas’yev N.G., Avdeyev K.V., Levin D.I. O raschete proizvodstvennykh zdaniy na avariynyye vozdeystviya ot vneshnego vzryva. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 3, pp. 4–7. (In Russian). DOI: 10.33622/0869-7019.2022.03.04-07
7. Birbraer A.N., Roleder A.Yu. Ekstremal’nye vozdeistviya na sooruzheniya [Extreme impacts on structures]. Saint Petersburg: Polytechpress. 2009. 594 p.
8. Chernukha N.A. Structural analysis of buildings at explosive actions in SCAD. Inzhenerno-stroitel’nyi zhurnal. 2014. No. 1, pp. 12–22. (In Russian). DOI: 10.5862/MCE.45.3
9. Kotlyarevsky V. Prochnost’ i zashchitnye svoistva spetsial’nykh sooruzhenii. Metody rascheta i programmnye sredstva [Durability and protective properties special constructions. Calculation methods and software tools]. Magnitogorsk: VELD. 2014. 88 p.
10. Savenkov A.Y., Mkrtychev O.V. Nonlinear calculation of reinforced concrete structures to the impact of the air shock wave. Vestnik MGSU. 2019. Vol 14. No. 1, pp. 33–45. (In Russian). http://dx.doi.org/10.22227/1997- 0935.2019.1.33–45
11. Bathe K., Wilson Е. Chislennye metody analiza i metod konechnykh elementov [Numerical methods in finite element analysis]. Moscow: Stroyizdat. 1982. 447 p.
12. Mkrtychev O.V., Novozhilov Yu.V., Savenkov A.Yu. The impact of heavy object on an underground structure when falling onto the ground surface. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii. 2021. Vol. 17. No. 4, pp. 425–438. (In Russian). http://dx.doi.org/10.22363/1815-5235-2021-17-4-425-438
13. Mkrtychev O.V., Dorozhinskiy V.B., Lazarev O.V. The calculation of reinforced concrete buildings constructions on the explosive loads in the nonlinear dynamic formulation. Vestnik MGSU. 2011. No. 4, pp. 243–247. (In Russian).
14. Pavlov A.S. Numerical method of calculation of blast loads pressure to structures with complex geometry shapes. Academia. Architecture and Construction. 2017. No. 3, pp. 108–112. (In Russian).
15. Valger S.A. Creation of computing technologies for calculating wind and shock-wave effects on structures. Cand. Diss. (Physical and mathematical sciences). Novosibirsk. 2015. 220 p. (In Russian).
16. Schwer L., Teng H., Souli M. LS-DYNA air blast techniques: comparisons with experiments for close-in charges. 10th European LS-DYNA Conference. Würzburg. Germany. 2015.
17. Bento Rebelo H., Cismașiu C. A comparison between three air blast simulation techniques in LS-DYNA. 11th European LS-DYNA Conference. 2017.
18. Andrade F. Feucht M. A Comparison of damage and failure models for the failure prediction of dual-phase steels. 11th European LS-DYNA Conference. Salzburg. Austria. 2017.
19. Zahra S. Tabatabaei, Jeffery S. Volz. A Comparison between three different blast methods in LSDYNA®: LBE, MM-ALE, coupling of LBE and MMALE. 12th International LS-DYNA® Users Conference. 2012. 10 p. URL: https://www.dynalook.com/12th-international-ls-dyna-conference/blast-impact20-d.pdf
20. Mkrtychev O., Savenkov A. Modeling of blast effects on underground structure. International Journal for Computational Civil and Structural Engineering. 2019. Vol. 15. Iss. 4, pp. 111–122.

For citation: Mkrtychev O.V., Savenkov A.Yu. Gas-dynamic approach to the calculation of an underground structure for the impact of an air shock wave. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 8–14. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-8-14

Settlement and Bearing Capacity of a Round Stamp on an Elastic-Plastic Base

Number of journal: 12-2022
Autors:

Ter-Martirosyan Z.G.,
Ter-Martirosyan A.Z.,
Filippov K.A.

DOI: https://doi.org/10.31659/0044-4472-2022-12-3-7
УДК: 624.15

 

AbstractAbout AuthorsReferences
An analytical solution of the problem of settlement and bearing capacity of a round stamp on an elastic-plastic base is considered. The stresses in the base were determined on the basis of the expressions of J. Boussinesq. To determine the relationship between stresses and strains, the Hencky system of physical equations is used, in which the strain components are divided into volumetric and deviatoric components. This made it possible to use S.S. Grigoryan’s model for the volumetric component of deformation, and S.P. Timoshenko’s model for the deviatory one. The solution obtained in this work makes it possible to describe the shape of the “settlement-load” curve with a double curvature for a round stamp on an elastic-plastic base.
Z.G. TER-MARTIROSYAN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Z. TER-MARTIROSYAN, Doctor of Sciences (Engineering),
K.A. FILIPPOV, Post-Graduate (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Florin V.A. Osnovy mekhaniki gruntov [Fundamentals of soil mechanics]. Leningrad-Moscow: Gosstroizdat. 1958. Vol. I. 356 p.; Vol. II, 1961. 540 p.
2. Nadai A. Plastichnost’ i razrushenie tverdykh tel [Plasticity and destruction of solids]. Moscow: MIR. 1969. Vol. 2. 863 p.
3. Genki G. Novaya teoriya plastichnosti, uprochneniya, polzuchesti i opyty nad neuprugimi metallami. V sb. Teoriya plastichnosti [A new theory of plasticity, hardening, creep and experiments on inelastic metals. In Sat . Theory of plasticity]. Moscow: IL. 1948, pp. 114–135.
4. Vardanyan G.S., Andreev V.I., Atarov N.M., Gorshkov A.A. Soprotivlenie materialov s osnovami teorii uprugosti i plastichnosti [Resistance of materials with the basics of the theory of elasticity and plasticity]. Moscow: ASV. 1995. 572 p.
5. Vyalov S.S. Reologicheskie osnovy mekhaniki gruntov [Rheological foundations of soil mechanics]. Moscow: Vysshaya Shkola. 1978. 447 p.
6. Ter-Martirosyan Z.G., Ter-Martirosyan A.Z. Mekhanika gruntov v vysotnom stroitel’stve s razvitoi podzemnoi chast’yu [Soil mechanics in high-rise construction with a developed underground part]. Moscow: ASV. 2020. 946 p.

For citation: Ter-Martirosyan Z.G., Ter-Martirosyan A.Z., Filippov K.A. Settlement and bearing capacity of a round stamp on an elastic-plastic base. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-3-7

The Possibility of Using Renewable Energy Sources in the Design of Systems for Creating and Maintaining Microclimate Parameters in Orthodox Churches

Number of journal: 11-2022
Autors:

Kochev A.G.,
Gagarin V.G.,
Sokolov M.M.,
Kocheva E.A.

DOI: https://doi.org/10.31659/0044-4472-2022-11-58-63
УДК: 697.9:533.6

 

AbstractAbout AuthorsReferences
Examples of the use of various renewable energy sources in relation to Orthodox churches are given. The features of the use of heat pumps are considered. An analysis of several Orthodox churches is made in order to select the optimal structure for the use of non-traditional energy sources in it. The advantages and disadvantages of the ongoing activities are noted. Appropriate conclusions are given.
A.G. KOCHEV1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.G. GAGARIN2, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.M. SOKOLOV1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.A. KOCHEVA1, Master, Engineer

1 Nizhny Novgorod State University of Architecture and Civil Engineering (65, Ilinskaya Street., Nizhny Novgorod, 603950, Russian Federation)
2 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Kochev A.G. Mikroklimat pravoslavnykh khramov [Microclimate of Orthodox churches]. Nizhnii Novgorod: NNGASU. 2004. 449 p.
2. Kochev A.G., Sokolov M.M. Vliyanie vneshnei aerodinamiki na mikro-klimat pravoslavnykh khramov [The influence of external aerodynamics on the micro-climate of Orthodox churches]. Nizhnii Novgorod:NNGASU. 2017. 188 p.
3. Sokolov M.M. Ispol’zovanie vozobnovlyaemykh i netraditsionnykh istochni-kov energii [The use of renewable and non-traditional energy sources]. Nizhnii Novgorod: NNGASU. 2015. 116 p.
4. Kochev A.G., Sokolov M.M., Kocheva E.A., Fedotov A.A. Analysis of the use of renewable energy sources to create and maintain the required parameters of microclimate in Orthodox churches. Privolzhskii nauchnyi zhurnal. 2019. No. 4(52), pp. 127–133. (In Russian).
5. Kochev A.G., Sokolov M.M., Kocheva E.A., Zharnakova A.S. Analysis of the use of energy-saving technologies in Orthodox churches. Izvestiya vuzov. Stroitel’stvo. 2017. No. 9(705), pp. 70–78. (In Russian).
6. Filatov N. F. Nizhnii Novgorod. Arkhitektura XIV – nachala XX vv. [Nizhny Novgorod. Architecture of the XIV – early XX centuries]. Nizhnii Novgorod: Nizhny Novgorod News. 1994. 247 p.
7. Kochev A.G., Sokolov M.M., Moskaeva A.S., Kocheva E.A. Determination of candle consumption as an important component of the thermal balance of an Orthodox church. Privolzhskii nauchnyi zhurnal. 2016. No. 2, pp. 56–62. (In Russian).
8. Kochev A.G., Sokolov A.S., Sergienko A.S., Moskaeva A.S., Kocheva E.A. The peculiarities of creating a microclimate in Orthodox churches. Izvestiya vuzov. Stroitel’stvo. 2016. No. 4, pp.74–82. (In Russian).
9. Kochev A.G., Sokolov M.M. Vliyanie vneshnei aerodinamiki na mikroklimat pravoslavnykh khramov [The influence of external aerodynamics on the microclimate of Orthodox churches]. Nizhnii Novgorod:NNGASU, 2017. 188 p.

For citation: Kochev A.G., Gagarin V.G., Sokolov M.M., Kocheva E.A. The possibility of using renewable energy sources in the design of systems for creating and maintaining microclimate parameters in orthodox churches. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 11, pp. 58–63. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-11-58-63

https://www.traditionrolex.com/11