Hybrid Polymer Composites for Structural Purposes

Number of journal: 12-2023
Autors:

Valiev A.I.,
Suleimanov A.M.

DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57
УДК: 691.175

 

AbstractAbout AuthorsReferences
A review of foreign and domestic literature and practice on the use of polymer composites for structural purposes in the field of construction is carried out. The main factors hindering the widespread introduction of polymer composites in the construction sector have been identified: polymer composite profiles manufactured at the factories duplicate the shapes of profiles of metal analogues with isotropic mechanical properties; not all structural elements made of polymer composites meet the defining condition of strength testing according to the second limit state (for deformations), this leads to an increase in cross-sections, a decrease in the pitch of structural elements; problems related to insufficient information on durability, involving the use of overestimated values of the coefficients of the working conditions of the material due to insufficient knowledge of the properties and a significant spread of physical and mechanical characteristics; problems related to import substitution of polymer composite components. A scientific problem has been formulated, which consists in studying the mechanisms of formation of the adhesive strength of hybrid composites at the fiber-matrix interface, followed by the development of effective ways to regulate their condition in order to ensure a strong connection. The actual tasks, the solution of which needs to be concentrated in order to accelerate the process of introducing hybrid polymer composites for structural purposes, are presented.
A.I. VALIEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. SULEIMANOV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street, Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. Sapunov V.T. Strength, reliability and durability of composites as structural materials. Kompozity i nanostruktury. 2016. Vol. 8. No. 2. Iss. 30, pp. 110–119. (In Russian).
2. Mercier C., Khelil A., Al Mahmoud F., Blin-Lacroix J.L., Pamies A. Experimental investigations of buckling behaviour of steel scaffolds. Structures. 2021. Vol. 33, pp. 433–450. DOI: 10.1016/J.ISTRUC.2021.04.045
3. Kayumov R.A., Shakirzyanov F.R. Large deflections and stability of low-angle arches and panels during creep flow. Advanced Structured Materials. 2021. Vol. 141, pp. 237–248. DOI: 10.1007/978-3-030-54928-2_18
4. Zheng Y., Guo Z. Investigation of joint behavior of disk-lock and cuplok steel tubular scaffold. Journal of Constructional Steel Research. 2021. Vol. 177. DOI: 10.1016/J.JCSR.2020.106415
5. Peng J.L., Ho C.M., Chan S.L., Chen W.F. Stability study on structural systems assembled by system scaffolds. Journal of Constructional Steel Research. 2017. Vol. 137, pp. 135–151. DOI: 10.1016/J.JCSR.2017.06.004
6. Donetskii K.I., Usacheva M.N., Khrul’kov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM. 2022. No. 6. Iss. 112, pp. 58–67. (In Russian). DOI: 10.18577/2307-6046-2022-0-6-58-67
7. Khrul’kov A.V., Donetskii K.I., Usacheva M.N., Goryanskii A.N. Infusion methods for the manufacture of polymer composite materials (review). Part 2. Trudy VIAM. 2022. No. 7. Iss. 113, pp. 50–62. (In Russian). DOI: 10.18577/2307-6046-2022-0-7-50-62
8. Kuznetsov I.L., Salakhutdinov M.A., Aripov D.N., Fakhrutdinov A.E. Development and experimental studies of canopy structures over the stands from pultrusion fiberglass profiles. Izvestiya of higher educational institutions. Construction. 2019. No. 3, pp. 96–108. (In Russian).
9. Suleimanov A.M., Shakirov A.R., Agliullina A.F., Starovoitova I.A. Investigation of short-term and long-term strength of adhesive adhesive joints for external reinforcement systems of building structures. Izvestiya of the KSACU. 2018. No. 4. Iss. 46, pp. 309–318. (In Russian).
10. Salakhutdinov M.A., Kayumov R.A., Aripov D.N., Khanekov A.R. Numerical study of the bearing capacity of a composite I-shaped section beam of pultruded fiberglass profiles. Izvestiya of the KSACU. 2022. No. 2. Iss. 60, pp. 15–23. (In Russian). DOI: 10.52409/20731523_2022_2_15 EDN: BHRXOY
11. Skudra A.M., Bulavs F.Ya. Strukturnaya teoriya armirovannykh plastikov [Structural theory of reinforced plastics]. Riga: Zinatne. 1978. 192 p.
12. Potyrała P.B. Use of fibre-reinforced polymers in bridge construction. State of the art in hybrid and all-composite structures. 2011. http://upcommons.upc.edu/pfc/handle/2099.1/12353 (Date of access 18.10.2023).
13. Keller T. Use of fibre reinforced polymers in bridge construction. SED 7. – Zurich: IABSE, 2003. 131 p.
14. Shenoi R.A., Moy S.J., Hollaway L.C. Advanced polymer composites for structural applications in construction. Southampton: Southampton University. 2002. https://www.icevirtuallibrary.com/doi/abs/10.1680/apcfsaic.31227.0001 (Date of access 18.10.2023).
15. Lightweight thermoset composites. Materials in use, their processing and applications / Edited by Peter Dufton. Shrewsbury: Rapratehnology limited. 2000. 212 р.
16. The international handbook of FRP composites in civil engineering / Edited by Manoochehr Zoghi. – CRC Press, 2013. 706 p.
17. Hayes M.D., Lesko J.J., Haramis J., Cousins T.E., Gomez J., Massarelli P. Laboratory and field testing of composite bridge superstructure. ASCE. Journal of Composites for Construction. 2000. Vol. 4. No. 3, pp. 120–128.
18. Hayes M.D., Lesko J.J., Cousins T., Waldron C., Witcher D., Barefoot G., Gomez J. Design of a short span bridge using FRP girders. Composites in Construction International Conference, October 10–12, 2001, Porto, Portugal.
19. Ozerov S.N., Pankov A.V. Selection of pedestrian bridge structural-strength scheme and profile assortment. Introduction of the experience of applied advanced aircraft engineering technologies in industry and transportation. Moscow. 2004. Iss. 3, pp. 42–48. (In Russian).
20. Ushakov A.E., Klenin Yu.G., Sorina T.G., Khairetdinov A.Kh., Safonov A.A. Bridge structures made of composites. Kompozity i Nanostruktury. 2009. No. 3, pp. 25–37. (In Russian).
21. Klenin Yu.G., Ozerov S.N., Semenov V.T., Usha-kov A.E., Khairetdinov A.Kh. Bridge structures made of fiberglass. Introduction of the experience of applied advanced aircraft engineering technologies in industry and transportation. Moscow: Publishing House TsAGI. 2001. Iss. 1, pp. 135–140. (In Russian).
22. Ivanov A.N. Prospects of application of bolt-friction joints of elements made of polymer fiber-reinforced composites. Izvestiya of higher educational institutions. Construction. 2013. No. 10, pp. 104–109. (In Russian).
23. Hughes J.D.H. The carbon fibre/epoxy interface – a review. Composites Science and Technology. 1991. Vol. 41, pp. 13–45.
24. Kim J.-K., Mai Y.-W. Engineered interfaces in fiber reinforced composites. Oxford: Elsevier, 1998. 486 р.
25. Nguyen D.A., Starostina I.A., Stoyanov O.V. Evaluation of the surface free energy of disperse additives for polymeric compositions under selective wetting conditions. Polymer Science, Series D. Glues and Sealing Materials. 2015. Vol. 8, No. 4, pp. 280–286.
26. Kramarev D.V., Osipchik V.S., Chalaya N.M., Berezina A.B., Kolesnikov A.V. Study of interfacial phenomena at the fiber-binder interface in imidoorganoplastics. Plasticheskie massy. 2017. No. 7–8, pp. 3–6. (In Russian).
27. Lizunov D.A., Osipchik B.C., Olikhova Yu.V., Kravchenko T.P. Influence of epoxy oligomer on the properties of epoxyphenolic binder and carbon fiber reinforced plastics based on it. Plasticheskie massy. 2013. No. 9, pp. 39–42. (In Russian).
28. Starostina I.A., Stoyanov O.V. Development of methods for evaluation of surface acid-base properties of polymeric materials. Vestnik of the Kazan Technological University. 2010. No. 4, pp. 58–68. (In Russian).

For citation: Valiev A.I., Suleimanov A.M. Hybrid polymer composites for structural purposes. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-51-57


Print   Email