Личный кабинет

Analytical Calculation of the Outdoor Air Enthalpy in the Warm Period of the Year Using Data SP 131.13330.2018

Number of journal: 3-2021
Autors:

Samarin O.D.

DOI: https://doi.org/10.31659/0044-4472-2021-3-44-47
УДК: 699.86:697.1
{j2store1183|cart{/j2store}

 

AbstractAbout AuthorsReferences
The relevance of the research is related to the need to have information about the calculated parameters of the outdoor climate in the design of systems for providing microclimate of civil buildings and the lack of such data in the main regulatory document of the Russian Federation in this area – SP 131.13330.2018. The research is based on the principles of choosing the enthalpy of outdoor air in the warm season for the calculation of air conditioning systems. The purpose of the study is to obtain a method for calculating the uniform enthalpy of outdoor air in the warm period of the year, taking into account only the data in table 4.1 of SP 131 without using graphical interpolation on the map in The Appendix to the SP 131. The task of the study is to identify correlations for climate parameters that are essential for the method under consideration, and to construct a calculation formula for the outdoor air enthalpy according to parameters «B». A combination of probabilistic and statistical approach with basic relations of thermodynamics of humid air is used, which allows us to obtain an analytical expression for the enthalpy of outdoor air, which is valid within the main part of the territory of the Russian Federation. Correlations between the relative humidity of outdoor air and temperature for parameters «B» are given, as well as for the correction coefficient to the calculation formula obtained by comparing its results with the map data in The Appendix to the SP 131, and the accuracy of this coefficient is estimated.
O.D. SAMARIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Umnyakova N.P. Climatic parameters of typical year for thermal engineering calculations. BST: Byulleten’ stroitel’noy tekhniki. 2016. No. 8 (984), pp. 48–51. (In Russian).
2. Kobysheva N.V., Klyuyeva M.V., Kulagin D.A. Climatic risks of city heat supply. Trudy Glavnoy geofizicheskoy observatorii im. A.I.Voeykova. 2015. No. 578, pp. 75–85. (In Russian).
3. Naji S., Alengaram U.J., Jumaat M.Z., Shamshir-band S., Basser H., Keivani A., Petkovi´c D. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renewable and Sustainable Energy Reviews. 2016. Vol. 53, pp. 1520–1528.
4. Wang X., Mei Y., Li W., Kong Y., Cong X. Influence of sub-daily variation on multi-fractal detrended analysis of wind speed time series. PLoS ONE. 2016. Vol. 11. No. 1, pp. 6014–6284.
5. De Larminat P. Earth climate identification vs. anthropic global warming attribution. Annual Reviews in Control. 2016. Vol. 42, pp. 114–125.
6. Malyavina E.G., Malikova O.Yu., Fam V.L. Method for selection of design temperatures and outside air enthalpy during warm period of the year. AVOK. 2018. No. 3, pp. 60–69. (In Russian).
7. Malyavina E.G., Lyong F.V. Choice of the outdoor air design temperature and enthalpy according to the given provisions. SOK. 2017. No. 12 (192), pp. 74–76. (In Russian).
8. Malyavina E.G., Kryuchkova O.Yu. Estimation of the energy consumption of the different central air condition systems. Nauchno-tekhnicheskiy vestnik Povolzhya. 2014. No. 4, pp. 149–152. (In Russian).
9. Samarin O.D. The probabilistic-statistical modeling of the year variation of the external air temperature and its values in the warm period. Vestnik MGSU. 2018. Vol. 13. No. 3 (114), pp. 378–384. (In Russian).
10. Samarin O.D., Kirushok D.A. Estimation of external climatic parameters for air treatment with indirect evaporative cooling in plate heat recovery units. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 41–43. (In Russian).
11. Malyavina E.G., Samarin O.D. Stroitel’naya teplofizika i mikroklimat zdanii [Construction thermophysics and microclimate of buildings]. Moscow: MISI-MGSU, 2018. 288 p.

For citation: Samarin O.D. Analytical calculation of the outdoor air enthalpy in the warm period of the year using data SP 131.13330.2018. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 44–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-44-47

An Experience from the Geotechnical Practice of Reinforcing a Leaned Slope

Number of journal: 3-2021
Autors:

Sokolov N.S.,
Zimin S.B.

DOI: https://doi.org/10.31659/0044-4472-2021-3-38-43
УДК: 624.154

 

AbstractAbout AuthorsReferences
Geotechnical construction is one of the most important branches of zero-point parts construction of objects for various purposes. The existing rich potential of geotechnical technologies makes it possible to successfully complete the tasks of arranging foundations of buildings in any engineering and geological conditions and in any territory, including slopes, ravines, embankments. Very often there are cases of construction of objects in dissected areas with alternating structurally unstable soils, moreover, additionally loaded with artificial leaned slopes. In geotechnical practice, there are still cases of construction on such slopes without proper engineering and technical support, i.e. without the presence of actually carried out engineering surveys, as well as developed anti-landslide measures. As a result, in most cases, disregard for generally accepted norms leads to undesirable consequences, expressed in deformations of the constructed buildings. This article examines one such case.
N.S. SOKOLOV1, 2, Candidate of Sciences (Engineering), Director (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.B. ZIMIN2, Engineer

1 I.N. Ulianov Chuvash State University (15, Moskovsky Prospect, Cheboksary, Chuvash Republic, 428015, Russian Federation)
2 OOO NPF “FORST” (109a, Kalinina Street, Cheboksary, Chuvash Republic, 428000, Russian Federation)

1. Ильичев В.А., Мангушев Р.А., Никифорова Н.С. Опыт освоения подземного пространства российских мегаполисов // Основания, фундаменты и механика грунтов. 2012. № 2. С. 17–20.
1. Ilichev V.A., Mangushev R.A., Nikiforova N.S. Experience of development of russian megacities underground space. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 2, pp. 17–20. (In Russian).
2. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Геотехническое сопровождение развития городов. СПб.: Геореконструкция, 2010. 551 с.
2. Ulickij V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical Support of Urban Development]. Saint Petersburg: Georeconstruction. 2010. 551 p.
3. Ilichev V.A., Konovalov P.A., Nikiforova N.S., Bulga-kov L.A. Deformations of the Retaining Structures Upon Deep Excavations in Moscow. Proc. Of Fifth Int. Conf on Case Histories in Geotechnical Engineering, April 3–17. New York, 2004, pp. 5–24.
4. Ilichev V.A., Nikiforova N.S., Koreneva E.B. Computing the evaluation of deformations of the buildings located near deep foundation tranches. Proc. of the XVIth European conf. on soil mechanics and geotechnical engineering. Madrid, Spain, 24–27th September 2007. «Geotechnical Engineering in urban Environments». Vol. 2, pp. 581–585.
5. Nikiforova N.S., Vnukov D.A. Geotechnical cut-off diaphragms for built-up area protection in urban underground development. The pros, of the 7thI nt. Symp. «Geotechnical aspects of underground construction in soft ground», 16–18 May, 2011. tc28 IS Roma, AGI, 2011, No. 157NIK.
6. Nikiforova N.S., Vnukov D.A. The use of cut off of different types as a protection measure for existing buildings at the nearby underground pipelines installation. Proc. of Int. Geotech. Conf. dedicated to the Year of Russia in Kazakhstan. Almaty, Kazakhstan, 23–25 September 2004, pp. 338–342.
7. Petrukhin V.P., Shuljatjev O.A., Mozgacheva O.A. Effect of geotechnical work on settlement of surrounding buildings at underground construction. Proceedings of the 13th European Conference on Soil Mechanics and Geotechnical Engineering. Prague, 2003.
8. Triantafyllidis Th., Schafer R. Impact of diaphragm wall construction on the stress state in soft ground and serviceability of adjacent foundations. Proceedings of the 14th European Conference on Soil Mechanics and Geotechnical Engineering. Madrid, Spain, 22–27 September 2007, pp. 683–688.
9. Sokolov N.S. Ground Ancher Produced by Elektric Discharge Technology, as Reinforsed Concrete Structure. Key Enginiring Materials. 2018, pp. 76–81.
10. Sokolov N.S. Use of the piles of effective type in geotechnical construction. Key Enginiring Materials. 2018, pp. 70–74. DOI: 10.4028/www.scientific.net/KEM.771.70
11. Sokolov N.S. One of geotechnological technologies for ensuring the stability of the boiler of the pit. Key Enginiring Materials. 2018, pp. 56–69. https://doi.org/10.4028/www.scientific.net/KEM.771.56
12. Sokolov N.S. Regulated injection pile-electric discharge technology with multiple pile enlargements posed as an underground reinforced concrete structure with a controlled load capacity. 18 international multidisciplinary scientific GeoConference SGEM 2018 Albena Resort SPA Bulgaria. 2018, pp. 601–608.
13. Sokolov N.S. One of the geotechnical technologies to strengthen the foundation base in constraint environment in the addition of 4 floors. 18 international multidisciplinary scientific GeoConference SGEM 2018 Albena Resort SPA Bulgaria. 2018, pp. 513–522.
14. Sokolov N.S., Viktorova S.S. Method of aliging the turches of objects targe-sized foundations and increased loads on them. Key Enginiring Materials. 2018, pp. 1–11.
15. Соколов Н.С., Соколов А.Н., Соколов С.Н., Глушков В.Е., Глушков А.Е. Расчет буроинъекционных свай повышенной несущей способности // Жилищное строительство. 2017. № 11. С. 20–26.
15. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glush-kov V.E., Glushkov A.E. Calculation of Increased Bearing Capacity Bored Piles. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–26. (In Russian).
16. Соколов Н.С. Фундамент повышенной несущей способности с использованием буроинъекционных свай ЭРТ с многоместными уширениями // Жилищное строительство. 2017. № 9. С. 25–29.
16. Sokolov N.S. The foundation of increased bearing capacity employing bored electric discharge (ЭРТ) piles with multi-seat broadening. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 9, pp. 25–29. (In Russian).
17. Соколов Н.С., Викторова С.С. Исследование и разработка разрядного устройства для изготовления буровой набивной сваи // Строительство: Новые технологии – новое оборудование. 2017. № 12. С. 38–43.
17. Sokolov N.S., Viktorova S.S. Research and Development of a Discharge Device for Manufacturing a Bored Pile. Stroitelstvo: noviye tekhnologiyi – novoye oborudovaniye. 2017. No. 12, pp. 38–43. (In Russian).
18. Nikolay Sokolov, Sergey Ezhov, Svetlana Ezhova. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. Vol. 15. article 482, pp. 518–523. DOI: 10.5937/jaes15-14719.
19. Соколов Н.С. Электроимпульсная установка для изготовления буроинъекционных свай // Жилищное строительство. 2018. № 1–2. С. 62–66.
19. Sokolov N.S. Electric pulse installation for the manufacture of bored ppiles. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 1–2, pp. 62–66. (In Russian).
20. Соколов Н.С. Один из подходов решения проблемы по увеличению несущей способности буровых свай // Строительные материалы. 2018. № 5. С. 44–47. https://doi.org/10.31659/0585-430X-2018-759-5-44-47
20. Sokolov N.S. One Approach to solve the Issue of Increasing the Bearing Capacity of Boring Piles. Stroitel’nye Materialy [Construction Materials]. 2018. No. 5, pp. 44–47. (In Russian). https://doi.org/10.31659/0585-430X-2018-759-5-44-47
21. Соколов Н.С., Соколов А.Н., Соколов С.Н., Глушков В.Е., Глушков А.Е. Расчет буроинъекционных свай повышенной несущей способности // Жилищное строительство. 2017. № 11. С. 20–26.
21. Sokolov N.S., Sokolov A.N., Sokolov S.N., Glushkov V.E., Glushkov A.E. Calculation of increased bearing capacity bored piles. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 20–26. (In Russian).
22. Соколов Н.С., Соколов С.Н., Соколов А.Н., Федоров П.Ю. Использование буроинъекционных свай ЭРТ в качестве оснований фундаментов повышенной несущей способности // Промышленное и гражданское строительство. 2017. № 9. С. 66–70.
22. Sokolov N.S., Sokolov S.N., Sokolov A.N., Fedorov P.Yu. The Use of Electric Discharge Technology Bored Piles as increased bearing capacity foundations base. Promyshlennoe i Grazhdanskoe Stroitelstvo. 2017. No. 9, pp. 66–70. (In Russian).
23. Соколов Н.С. Технология увеличения несущей способности основания // Строительные материалы. 2019. № 6. С. 67–72. DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
23. Sokolov N.S. Technology of increasing a base bearing capacity. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–72. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
24. Соколов Н.С., Соколов С.Н., Соколов А.Н., Федоров П.Ю. Буроинъекционные сваи ЭРТ как основания фундаментов повышенной несущей способности // Труды Национально-технической конференции с иностранным участием «Нелинейная механика грунтов и численные методы расчетов в геотехнике и фундаментостроении». Воронежский государственный технический университет. Воронеж, 2019. С. 195–201.
24. Sokolov N.S., Sokolov S.N., Sokolov A.N., Fedo-rov P.Yu. Bored Piles by Electric Discharge Technology (ЭРТ) as a base of increased bearing capacity foundations. Works of the National Technical Conference with foreign participation «Nonlinear soil mechanics and numerical methods of calculation in geotechnics and foundation engineering». Voronezh State Technical University. Voronezh. 2019, pp. 195–201.
25. Соколов Н.С. Разрядно-импульсная геотехническая электроразрядная технология усиления оснований // Строительные материалы. 2020. № 12. С. 63–65. DOI: https://doi.org/10.31659/0585-430X-2020-787-12-63-65
25. Sokolov N.S. Discharge-pulse geotechnical electro discharge technology of bases strengthening. Stroitel’nye Materialy [Construction Materials]. 2020. No. 12, pp. 63–65. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-787-12-63-65
26. Соколов Н.С. Алгоритм понижения полов подвала с использованием свай ЭРТ и грунтовых анкеров ЭРТ // Бетон и железобетон. 2020. № 2 (602). С. 39–47.
26. Sokolov N.S. The algorithm of lowering floors of the basement with the use of piles ERT and ground anchors ERT. Beton i Zhelezobeton [Concrete and Reinforced Concrete]. 2020. No. 2 (602), pp. 39–47.

For citation: Sokolov N.S., Zimin S.B. An experience from the geotechnical practice of reinforcing a leaned slope. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 38–43. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-38-43

Features of the Architecture of Armenian Churches Black Sea Coast of Russia

Number of journal: 3-2021
Autors:

Gulyan D.О.

DOI: https://doi.org/10.31659/0044-4472-2021-3-33-37
УДК: 726.5

 

AbstractAbout AuthorsReferences
The originality and specificity of the architecture of Armenian churches located on the Black Sea coast of the Russian Federation are considered. The poly-confessional nature of the region under consideration, the respect of the multinational people inhabiting the specified territory for various confessions are noted. It was emphasized that Armenia was the first country to establish Christianity as a state religion. The initial epoch of settlement of the Black Sea coast by Armenians is indicated in the context of historical and genetic features. Particular attention is paid to the implementation of church requirements in the design of religious buildings. Of considerable interest is the architecture of existing Armenian churches located on the territory of municipalities. Sochi and Anapa. The traditional features of Armenian temple architecture are highlighted. The results of the study can be used in the process of designing Armenian Orthodox churches, in compliance with traditional church canons.
D.О. GULYAN, architect (This email address is being protected from spambots. You need JavaScript enabled to view it.)Kuban State Agrarian University named after I.T. Trubilin (13, Kalinina Street, Krasnodar, 350044, Russian Federation)
1. Mommzen T. Istoriya Rima [History of Rome]. Saint Petersburg: Lenizdat, 1993. 269 p.
2. Metsger Bryus M. Kanon Novogo Zaveta: vozniknoveniye, razvitiye, znacheniye [Canon of the New Testament: origin, development, meaning]. Moscow: Biblical and Theological Institute of St. Andrew, 2008. 332 p.
3. Subbotin O.S. History of the architecture of Orthodox churches of the Black Sea coast of Russia. Zhilishnoe Stroitel’stvo [Housing Construction]. 2013. No. 10, pp. 18–22. (In Russian).
4. Mane-Erna Shirinyan, Goar Muradyan. Armenian church canons translated from Greek. Textological observations. Historical and Philological Journal. 2000. No. 3, pp. 213–225. (In Armenian).
5. Osnovnyye administrativno-territorial’nyye preobrazovaniya na Kubani (1793–1985 gg.) [The main administrative-territorial transformations in the Kuban (1793–1985)]. Compiled by A.S. Azarenkova, I.Yu. Bondar, N.S. Vertysheva. Krasnodar: Krasnodar Book Publishing House, 1986. 394 p.
6. Gordon K.A. Staryy Sochi kontsa XIX – nachala XX vekov: Literaturno-khudozhestvennoye izdaniye [Old Sochi of the late XIX – early XX centuries: Literary and artistic edition]. Sochi: Doria, 2005. 164 p. (In Russian).
7. Subbotin O.S. Innovative materials and technologies in public buildings in Sochi. Zhilishnoe Stroitel’stvo [Housing Construction]. 2016. No. 11, pp. 29–34. (In Russian).
8. Yakobson A.L. Armyanskiye khachkary [Armenian khachkars]. Yerevan: Hayastan, 1986. 128 p.
9. Tokarskiy N.M. Arkhitektura Armenii IV–XVI vv. [Architecture of Armenia IV–XVI centuries]. Yerevan: Armgosizdat, 1961. 387 p.
10. Subbotin O.S. Architectural and planning heritage of Sochi. Zhilishnoe Stroitel’stvo [Housing Construction]. 2012. No. 5, pp. 48–51. (In Russian).

For citation: Gulyan D.О. Features of the architecture of Armenian churches Black Sea coast of Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 33–37. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-33-37

Public and Commercial Buildings in the Structure of the Historical Center of Moscow and Paris. Principles of Continuity and Development

Number of journal: 3-2021
Autors:

Prokofieva I.A.

DOI: https://doi.org/10.31659/0044-4472-2021-3-25-32
УДК: 728.03

 

AbstractAbout AuthorsReferences
Public and commercial buildings are the basis and compositional core of the center of each city. In Paris and Moscow, many of them were built in the mid-nineteenth and early twentieth centuries. They were rebuilt, changed, transformed, expanded their borders and, at the same time, retained their importance in the structure of the modern city. The construction of new commercial buildings was an important stage in the transformation of the center of Paris. Сentral indoor market (Les Halles), North Station (Paris-Nord), the arcades and department stores were the best solution for the settlement and reconstruction of the city center, for the creation of comfortable public and commercial spaces, and for additional routes in the city structure. Some urban planning principles of Paris and the experience of building new architectural objects were borrowed during the reconstruction of the center of Moscow in the XIX – early XX centuries. In Moscow, nine shopping arcades, the Muir and Merrilees Store were built. The trading rows in Moscow were completely rebuilt: Warm, Nikolsky, Sredny, Tagansky. Gostiny Dvor on Ilinka Street in Moscow has retained its importance as a wholesale trade center. At present, one can talk about a special system of public and commercial buildings, which is a city-forming element of the structure and unique appearance of the historical center of both Moscow and Paris.
I.A. PROKOFIEVA, Candidate of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow Institute of Architecture (State Academy) (11, Rozhdestvenka Street, Moscow, 107031, Russian Federation)

1. Maitland B. Peshekhodnye torgovo-obshchestvennye prostranstva [Pedestrian trade and public spaces]. Moscow: Stroyizdat, 1989. 155 p.
2. Geist J. Arcades, the history of a building type. London, 1985. 616 p.
3. Prokofieva I. A., Khayt V. L. Moscow passages-yesterday, today, tomorrow. Traditions and modernity. Arkhitektura i stroitel’stvo Moskvy. 2001. No. 1, pp. 18–23. (In Russian).
4. Gidion Z. Prostranstvo, vremya, arkhitektura [Space, time, architecture]. Moscow: Stroyizdat, 1984. 455 p.
5. Baileau L.A. Les Magasins au Bon Marche. Encyclopedie d’architecture, 1880.
6. Bondarenko I. A. Krasnaya ploshchad’ [Red Square of Moscow]. Moscow: Stroyizdat, 1991. 296 p.
7. Raninsky Yu. V. Historical and theoretical foundations of continuity in the development of the architectural ensemble. Diss. Cand. (Engineering). Moscow, 1982. (In Russian).
8. Prokofieva I.A. The merchant modern G.V. Baranovsky. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2010. No. 7, pp. 36–39. (In Russian).
9. Prokofieva I.A. Ilyinka. Arkhitektura i stroitel’stvo Moskvy. 2010. Vol. 549. No. 1, pp. 32–50. (In Russian).
10. Prokofieva I.A. Seating yard. History and modernity. Аcademia. Arkhitektura i stroitel’stvo. 2010. No. 1, pp. 41–46. (In Russian).
11. Prokofieva I.A. From the history of urban planning. The first Moscow passages. Arkhitektura i stroitel’stvo Moskvy. 1999. No. 6, pp. 44–48. (In Russian).

For citation: Prokofieva I.A. Public and commercial buildings in the structure of the historical center of Moscow and Paris. Principles of continuity and development. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 25–32. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-25-32

Investigation of the Cause of Destruction of the Support Node of the Metal Truss Covering the Concert and Sports Complex "Fetisov-Arena" in Vladivostok

Number of journal: 3-2021
Autors:

Vavrenyuk S.V.,
Vavrenyuk V.G.,
Farafonov A.E.,
Kuznetsov N.V.

DOI: https://doi.org/10.31659/0044-4472-2021-3-19-24
УДК: 69.059.2

 

AbstractAbout AuthorsReferences
The results of studies of the cause of metal truss destruction due to separation of support braces along the weld seam perimeter are given. In order to determine the cause of the destruction, a technical examination of the structural structures of the structure was carried out, as well as mechanical and metallographic studies of fragments of metal taken from the destroyed truss assembly. The results of the technical examination showed the absence of deformations in the load-bearing elements of the framework (deflections, roll, bends, skews, displacement), as well as mechanical damage. Mechanical tests of the samples showed that the steel of the metal truss complies with regulatory requirements. Metallographic studies showed that the torn-out fragment of the pipe of the upper belt of the tuning truss has a layered vidmanstett structure, formed as a result of a violation of the profile production technology (accelerated cooling after technological heating). According to the results of the work, it was concluded that the cause of the destruction of the support assembly of the truss was a defect in the structure (vidmanstett string-tour) in the main metal, as well as in the zones of thermal influence of the weld seam, which led to a decrease in the ductility of steel and an increase in the tendency to crack in the metal.
S.V. VAVRENYUK, Corresponding Member of RAACS, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.) ,
V.G. VAVRENYUK, Candidate of Sciences (Engineering),
A.E. FARAFONOV, Engineer,
N.V. KUZNETSOV, Engineer

Branch of FGBU “TSNIIP of Russian Minstroy”, Ministry of Construction, Housing and Utilities of the Russian Federation Far-Eastern Research, Design and Technological Institute of Construction (Branch of FGBU “TSNIIP of Russian Minstroy”, DalNIIS) (14, Borodinskaya Street, Vladivostok, 690033, Russian Federation)

1. Vavrenyuk S.V., Rudakov V.P., Vavrenyuk V.G., Farafonov A.E. Typical mistakes when repairing residential and public buildings under conditions of the monsoon climate of the Russian Far East. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 11, pp. 31–35. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-11-31-35
2. Vavrenyuk S.V., Ognev A.V., Samardak A.S., Vavrenyuk V.G. Possibility of obtaining metal coatings on concrete. Stroitel’nye Materialy [Construction Materials]. 2014. No. 11, pp. 41–43. (In Russian).
3. Ivannikov V.V., Nikolaev A.G., Schwartz V.M., Stepanov V.N. Characteristic defects and damage to metal structures. Khimicheskaya tekhnika. 2015. No. 7, pp. 28–36. (In Russian).
4. Bogatyreva I.V., Zgurin D.S., Lezov A.E. Improving the reliability and durability of metal rafters. Vestnik nauki i obrazovaniya. 2018. Vol. 1, pp. 142–147. (In Russian).
5. Wilhelm Yu.S., Sukhina K.N., Dubovsky M.E., Huderkina E.A., Vlasov V.N. The influence of deflection of an equal angle on the bearing capacity of coating structures. Inzhenernyi vestnik Dona. 2019. Vol. 2, pp. 63–69. (In Russian).
6. Sobyanin K.V., Shardakov I.N., Shestakov A.P., Glot I.O. Dynamic deformation interaction of the elements of the system “striker – gasket – reinforced concrete beam”. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. 2018. Vol. 4, pp. 11–15. (In Russian).
7. Bernstein M.L. Struktura deformirovannykh metallov [Structure of deformed metals]. Moscow: Metallurgiya, 1977. 431 p.
8. Deineko A.V., Kurochkina V.A., Yakovleva I.Yu., Starostin A.N. Design of reinforced concrete floors taking into account concreting work joints. Vestnik MGSU. 2019, No. 4, pp. 52–58. (In Russian).
9. Grozdov V.T. Tekhnicheskoe obsledovanie stroitel’nykh konstruktsii zdanii i sooruzhenii [Technical survey of building structures of buildings and structures]. Saint Petersburg: Tsentr kachestva stroitel’stva, 2004. 234 p.
10. Telichenko V.I., Roitman V.M., Slesarev M. Yu., Shcherbina E.V. Osnovy kompleksnoi bezopasnosti stroitel’stva [Fundamentals of complex construction safety]. Moscow: ASV. 2011. 168 p.
11. Kulyabko V.V. Reserves of design techniques and methods for calculating nonlinear damping of vibrations of buildings, structures and their elements. Spatial structures of buildings and structures (Research, calculation, design and application). Papers of. articles. Moscow: MOO PC, RAASN, NIIZHB, TSNIISK, TSNIIPSK. 2006. Issue 10, pp. 157–167. (In Russian)
12. Dobromyslov A.N. Oshibki proektirovaniya stroitel’nykh konstruktsii [Design errors of building structures]. Moscow: ASV. 2008. 208 p.
13. Dobromyslov A.N. Otsenka nadezhnosti zdanii i sooruzhenii po vneshnim priznakam [Assessment of the reliability of buildings and structures by external signs]. Moscow: ASV. 2008. 72 p.
14. Reiser V. D. Teoriya nadezhnosti sooruzhenii [Theory of the reliability of structures]. Moscow: ASV, 2010. 384 p.
15. Perelmuter A.V. Izbrannye problemy nadezhnosti i bezopasnosti stroitel’nykh konstruktsii [Selected problems of reliability and safety of construction structures]. Moscow: ASV. 2007. 253 p.
16. Mayorov V.Yu., Papynov E.K., Avramenko V.A. Application of carbonaceous template for porous structure control of ceramic composites based on synthetic wollastonite obtained via Spark Plasma Sintering. Ceramics International. 2015. Vol. 41. Iss. 1, pp. 1171–1176.
17. Kulyabko V.V. Reserves of design techniques and methods for calculating non-linear damping of oscillations of buildings, structures and their elements. Spatial structures of buildings and structures (Research, calculation, design and use). Moscow: MOO PC, RAASN, NIIZHB, TSNIISK, TSNIIPSK, 2006. Iss. 10, pp. 403–409. (In Russian).

For citation: Vavrenyuk S.V., Vavrenyuk V.G., Farafonov A.E., Kuznetsov N.V. Investigation of the cause of destruction of the support node of the metal truss covering the concert and sports complex “Fetisov-Arena” in Vladivostok. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 19–24. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-19-24

Problems of Application of Design Methods for Bases Reinforced with Reinforced Concrete Elements

Number of journal: 3-2021
Autors:

Stepanishev K.Yu.,
Sidorov V.V.

DOI: https://doi.org/10.31659/0044-4472-2021-3-13-18
УДК: 624.156.35

 

AbstractAbout AuthorsReferences
Numerical methods for calculating cells for determining the reduced modulus of deformation of a soil mass reinforced with vertical reinforced concrete elements based on the use of modern regulatory documentation, as well as numerical modeling methods, with further quantitative evaluation and comparison of the results obtained are considered. Shortcomings of the formula of SP 22.13330.2016 «Foundations of buildings and structures.Updated version of SNiP 2.02.01-83*» are revealed when comparing with the results of numerical modeling of soil cells reinforced with elements of increased rigidity. The existing formula for determining the reduced modulus of deformation is based on a number of assumptions and does not take into account the distinctive work of reinforced bases under load, the interaction of reinforcing elements both with each other and with the surrounding ground of the base. The rigidity of the reinforcing elements in the form of reinforced concrete piles in combination with the soil body overestimates the value of the reduced modulus of cell deformation, which is confirmed by field experiments and the results of numerical modeling.
K.Yu. STEPANISHEV, Research Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. SIDOROV, Candidate of Sciences (Engineering)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gorbunova M.А., Kleveko V.I. Analysis of methods of strengthening of the soil foundation by using vertical and horizontal reinforcement. Master’s Journal. 2020, pp. 149–155. (In Russian).
2. Jouns. D.K. Sooruzheniya iz armirovannogo grunta [Structure from reinforced soil]. Мoscow: Stroyizdat, 1989. 280 p.
3. Kravcov V.N., Yakunenko C.A., Lapatin P.V. Research of vertical reinforced by soil-concrete micropiles slab foundations’ ground bases and testing results in indastrial practice. Vestnik Polockogo Gosudarstvennogo Universiteta. 2015. Seria F, pp. 40–47. (In Russian).
4. Marinichev M.B. Practical implementation of vertical reinforcement for nonhomogeneous bases as a method to reduce non-uniform deformability of subsoil and compensate seismic loads to upper structure. Nauchnii jurnal KubGAU. 2015. No. 64, pp. 1–15. (In Russian).
5. Mirsoyapov I.T., Mustakimov V.R. Strength and deformability investigation of foundations bedding’s subsidence reinforced with vertical elements. Collection of international geotechnical conference. Saint Petersburg. 2005, pp. 133–137. (In Russian).
6. Mirsoyapov I.T., Popov А.О. Experimental basic research the work of the reinforcement maccife. Izvestia KazGASU. 2008. No. 2 (10), pp. 75–80. (In Russian).
7. Mustakimov V.R. Issledovanie stesnennoi prosadki armirovannykh vertikal’nymi elementami prosadochnykh gruntovykh osnovanii [Issledovanie stesnennoi prosadki armirovannih verticalnimi elementami prosadochnih gruntovih osnovanii]. Kazan. 2018. 48 p.
8. Popov А.О. Settlement calculation of clay bed reinforced with vertical elements. Ingenerno-stroitelnii jurnal. 2015. No. 4, pp. 19–27. (In Russian).
9. Popov А.О. Bearing capacity and settlements of earth foundations reinforced with vertical elements. Ingenernie iziscania dlya stroitelstva. 2014. No. 11, pp. 27–31. (In Russian).
10. Safin D.R. Study of deformability of vertically reinforced water-saturated argillir soil bodies. Izvestia KazGASU. 2008. No. 2 (10), pp. 81–84. (In Russian).
11. Ter-Martirosyan Z.G., Strunin P.V. Strengthening weak soils in the basis of foundation slabs with use of technology of jet grouting. Vestnic MGSU. 2010. No. 4, pp. 310–315. (In Russian).
12. Husainov I.I. A procedure to design a «structural geotechnogenic massif». Osnovaniya, fundamenty i mekhanika gruntov. 2015. No. 4, pp. 18–21. (In Russian).
13. Yakunenko C.A. Experimentalnie issledovaniya armirovannih gruntobetonnimi microsvayami osnovanii plitnih fudamentov. Problems of modern concrete and reinforced concrete: Collection of scientific works. Minsk: Institut BelNIIC. 2013, pp. 379–387. (In Russian).
14. Hou Juan, Zhang Meng-xi, Dai Zhi-heng, Li Jia-zheng, Zeng Feng-fan. Bearing capacity of strip foundations in horizontal-vertical reinforced soils. Geotextiles and Geomembranes. 2017. No. 1, pp. 29–34.

For citation: Stepanishev K.Yu., Sidorov V.V. Problems of application of design methods for bases reinforced with reinforced concrete elements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 13–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-13-18

Ensuring Favorable Conditions in the Wards of Infectious Diseases Hospitals in the Context of a Coronavirus Pandemic

Number of journal: 3-2021
Autors:

Umnyakova N.P.,
Shubin I.L.,
Shmarov I.A.,
Smirnov V.A.

DOI: https://doi.org/10.31659/0044-4472-2021-3-3-11
УДК: 725.514

 

AbstractAbout AuthorsReferences
The requirements of regulatory documents for temperature-humidity and light conditions, for ensuring the insolation of hospital rooms in the conditions of the coronavirus pandemic, as well as requirements for vibration protection of high-precision medical equipment (scanners, tomographs, installations for magnetic resonance examination of patients) are presented. The conducted analysis of various regulatory documents has shown the importance of meeting these requirements both in the construction of new hospital buildings and in the conversion of existing hospital facilities into infectious diseases wards for the treatment of coronavirus patients. The article also provides a scientific justification for the need to meet the requirements of the norms for the construction physics to ensure comfortable conditions for patients in hospital wards: favorable temperature conditions, insolation and light conditions in combination with high-quality diagnostics on high-tech equipment will contribute to the recovery of patients without the development of additional complications caused by uneven heat exchange of the human body, the multiplication of bacteria and viruses in the absence of the necessary amount of sunlight, which has a bactericidal and healing effect.
N.P. UMNYAKOVA1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.L. SHUBIN1, Doctor of Sciences (Engineering), Corresponding Member of RAACS,
I.A. SHMAROV1, Candidate of Sciences (Engineering),
V.A. SMIRNOV1, 2, Candidate of Sciences (Engineering)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences(21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Makarov V.V., Khromov A.V., Gushchin V.A., Tkachuk A.P. The emergence of new infections in the XXI century and methods of their identification using high-performance sequencing (NGS). Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta. 2017. No. 1, pp. 5–25. (In Russian).
2. Simulated Sunlight Rapidly Inactivates SARS-CoV-2 on Surfaces Shanna Ratnesar-Shumate. The Journal of Infectious Diseases. 2020. No. 6, pp. 3–9.
3. Shmarov I.A., Zemtsov V.A., Korkina E.V. Insolation: the practice of rationing and calculation. Zhilishchnoe stroitel’stvo. 2016. No. 7, pp. 48–53. (In Russian).
4. Castro R.A., Angus D.C., Hong S.Y., Lee C., Weissfeld L.A., Clermont G., & Rosengart M.R. (2012). Light and the outcome of the critically ill: An observational cohort study. Critical Care, 16(4). https://doi.org/10.1186/cc11437
5. Iroh Tam P.Y., Krzyzanowski B., Oakes J.M., Kne L., & Manson S. Spatial variation of pneumonia hospitalization risk in Twin Cities metro area, Minnesota. Epidemiology and Infection. 2017. 145 (15), 3274–3283. https://doi.org/10.1017/S0950268817002291
6. Wayse V, et al. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. European Journal of Clinical Nutrition. 2004. 58 (4), pp. 563–567
7. Kontorovich L.A., Kozlov V.V. Psychological crisis: modern features. Human factor. Sotsial’nyi psikholog, 2020. No. 2 (40), pp. 88–93. (In Russian).
8. Lyubov E.B., Zotov P.B., Polozhny B.S. Pandemics and suicide: an ideal storm and a moment of truth. Suitsidologiya. 2020. Vol. 11. No. 1 (38), pp. 3–38. (In Russian).
9. Ostrovsky D.I., Ivanova T.I. The influence of the new coronovirus infection COVID-19 on the psychological health of a person (literature review). Omskii psikhologicheskii zhurnal. 2020. No. 2, pp. 4–10. (In Russian).
10. Sergeeva M.S., Pyatin V.F., Glazkova E.N., Shirolapov I.V., Yakunina S.V., Korovina E.S., Romanchuk N.P. Features of psychosomatic responses at different times of the year to light stimulation of the human circadian clock. Sovremennye problemy nauki i obrazovaniya. 2015. No. 2, pp. 805–817. (In Russian).
11. Grant W.B., Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918–1919 influenza pandemic in the United States. Dermatoendocrinology. 2009. 1 (4): 215–219.
12. Gagarin V.G., Korkina E.V., Shmarov I.A., Pastushkov P.P. Investigation of the effect of multifunctional glass coating on the spectral transmission of light. Stroitel’stvo i rekonstruktsiya. 2015. No. 2 (58), pp. 90–95. (In Russian).
13. Gagarin V.G., Korkina E.V. Experimental studies of lighting parameters of window glasses. Integration, partnership and innovation in construction science and education. Collection of materials of the International Scientific Conference. Moscow, 2015.
14. Smirnov V. Vibration protection of historical buildings located near the lines of urban rail transport. Materials Science Forum. 2019. (945), pp. 318–324. DOI: 10.4028/www.scientific.net/MSF.945.318
15. Cabrera I.N., Le M.H.M. Reducing noise pollution in the hospital setting by establishing a Department of Sound: A survey of recent research on the effects of noise and music in health care. Preventive Medicine. 2000.
16. Joseph A., Rashid M. The architecture of safety: Hospital design. Current Opinion in Critical Care. 2007, December.
17. Salandin A., Arnold J., Kornadt O. Noise in an intensive care unit. The Journal of the Acoustical Society of America, 2011. 130 (6), 3754–3760.
18. Wei H., Jian X., Tong-Yi Z., Ming-Yi H., Jing-Wei Q., Ri-Qing L. Testing and isolation strategies for the vibrational hazards. 2019.
19. Joseph A., Rashid M. The architecture of safety: Hospital design. Current Opinion in Critical Care. 2007, December.
20. Melentyev A.V., Serebryakov P.V., Zheglova A.V. Influence of noise and vibration on the nervous regulation of the heart. Meditsina truda i promyshlennaya ekologiya. 2018. No. 9, pp. 19–23. (In Russian).
21. Himmel C. Isolation room exhaust fan noise in a hospital. In Proceedings of the INTER-NOISE 2016 – 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future. German Acoustical Society (DEGA). 2016, pp. 3592–3601.
22. Wei H., Jian X., Tong-Yi Z., Ming-Yi H., Jing-Wei Q., Ri-Qing L. Testing and isolation strategies for the vibrational hazards. Engineering Review. 2019. 39 (2), 124–131.
23. Chatterton P.F. Case history of a low frequency noise problem. Noise Control Vibration Isolation. 1979. 10 (7), 295–298.
24. Smirnov V.A. Reduction of impulse loads on overlappings with the help of dynamic vibration dampers. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologyai tekstil’noi promyshlennosti. 2017. No. 2 (368), pp. 296–299. (In Russian).
25. Mondrus V.L., Smirnov V.A. Vibroprotection of high-precision equipment from low-frequency oscillations. Academia. Arkhitektura i stroitel’stvo. 2011. No. 1, pp. 109–111. (In Russian).
26. Smirnov V.A. Methods of placing high-precision equipment in existing buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 6, pp. 76–77. (In Russian).

For citation: Umnyakova N.P., Shubin I.L., Shmarov I.A., Smirnov V.A. Ensuring favorable conditions in the wards of infectious diseases hospitals in the context of a coronavirus pandemic. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 3, pp. 3–11. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-3-3-11

Comparison of Allowed Damages with a Purpose of Calculating Procedures Used to Design of RC Frame Buildings Loaded by Seismic Forces

Number of journal: 1-2-2021
Autors:

Sosnin A.V.

DOI: https://doi.org/10.31659/0044-4472-2021-1-2-50-80
УДК: 624.94.012.45:624.044.3:699.841

 

AbstractAbout AuthorsReferences
On example of a RC frame (w/o shear walls and braces), formation features of a recessive part on a Pushover curve formed under inertial forces are considered. The research object is a 4-story frame-unit of a residential building with sizes on axis 14,7х9,6 m, which was erected in Ashgabat; tested in 1968 by representatives of a scientific school of Central Research Institute for Experimental Design (the Russian acronym, – CNIIEHP) with a powerful vibrating machine type В-2. The author conducted a numerical experiment on the frame using the nonlinear static analysis concept. Pushover curves, typical of various reinforcement parameters in hinges zones of RC primary members of the study frame are constructed. As a toolware, calculation procedures complying with requirements of ATC-40, ­FEMA-356 and FEMA-440, and realized in SAP2000, were used. It is established, that in a case included hinges zones formation in girders and columns of the frame, a flat horizontal part of a Pushover curve can’t be absent. Results of the workwere compared with foreign tests results accomplished on RC frame fragments. For the frame earthquake-resistance assessments using criteria of limit state closed to collapse were performed. Explanations about a lack of consistency between a purpose of calculating procedure using Response Spectrum Method for the frame which perceptive seismic loads formed by a design earthquake (named with the Russian acronym, – PZ) and a value of seismic-force-reduction factor K1 are presented (both used to Seismic Building Design Code SP 14.13330 formulation). It is noted, that it is necessary to supplement of SP 14.13330 with requirements for a minimum value of web reinforcement in hinges zones of primary RC members adjacent to beam-column joints of RC moment frames. Seismic-force-reduction factor K1 for the frame was calculated with value 0.34. On the case of the study a one-way relationship between earthquake-resistance and system vulnerability during a strong earthquake is explained.
A.V. SOSNIN1, 2, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Scientific-Research Laboratory of Design Outcomes Safety Estimation and Earthquake-Resistance of Building Structures (13А, Lenina Street, Smolensk, 214000, Russian Federation)
2 AO «TSNIIEP zhilishcha» – institute for complex design of residential and public buildings» (AO «TSNIIEP zhilishcha») (9/3, Dmitrovskoe Highway, Moscow, 127434, Russian Federation)

1. Айзенберг Я.М., Нейман А.И., Абакаров А.Д., Деглина М.М., Чачуа Т.Л. Адаптивные системы сей-смической защиты сооружений. М.: Наука, 1978. 248 с.
1. Ajzenberg Ya.M., Nejman A.I., Abakarov A.D., Deglina M.M., Chachua T.L. Adaptivnye sistemy seismicheskoy zashchity sooruzheniy [Adaptive systems for seismic protection of structures]. Moscow: Nauka. 1978. 248 p.
2. Джинчвелашвили Г.А., Мкртычев О.В., Соснин А.В. Анализ основных положений СП 14.13330.2011 «СНиП II-7–81*. Строительство в сейсмических районах» // Промышленное и гражданское строительство. 2011. № 9. С. 17–21.
2. Dzhinchvelashvili G.A., Mkrtychev O.V., Sosnin A.V. An analysis of main provisions of Seismic Building Design Code SP 14.13330.2011 «SNiP II-7–81*. Construction in Seismic Areas». Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 9, pp. 17–21. (In Russian).
3. Соснин А.В. Об уточнении коэффициента допускаемых повреждений K1 и его согласованности с концепцией редукции сейсмических сил в постановке спектрального метода (в порядке обсуждения) // Вестник гражданских инженеров. 2017. № 1 (60). С. 92–114.
3. Sosnin A.V. About refinement of seismic-force-reduction factor (K1) and its coherence with the concept of seismic response modification in formulation of the spectrum method (in order of a discussion). Vestnik grazhdanskih inzhenerov. 2017. No. 1 (60), pp. 92–114. (In Russian).
4. Викулин А.В., Дроздюк В.Н., Семенец Н.В., Широков В.А. К землетрясению без риска. Петропавловск-Камчатский: СЭТО-СТ, 1997. 120 с.
4. Vikulin A.V., Drozdyuk V.N., Semenec N.V., Shirokov  V.A. K zemletryaseniyu bez riska [To an earthquake without a risk]. Petropavlovsk-Kamchatsky: SETO-ST. 1997. 120 p.
5. Шапиро Г.А. Некоторые рекомендации по проектированию крупнопанельных зданий в районах с большой сейсмичностью (уроки Газлийских землетрясений). Сб. тр. ЦНИИЭП жилища «Работа конструкций жилых зданий из крупноразмерных элементов». М. 1977. Вып. 2. С. 16–20.
5. Shapiro G.A. Some recommendations for a large-panel buildings design in areas with high seismicity (on a case study of Gazli earthquakes). Research Proceedings «Structures behavior of residential buildings from large-sized elements». Moscow. 1977. Vol. 2, pp. 16–20. (In Russian).
6. Ашкинадзе Г.Н. Работа конструкций крупнопанельных зданий при колебаниях (Обзор) / Сб. тр. ­ЦНИИЭП жилища. Сер. «Конструкции жилых и общественных зданий». М.: ЦНТИ по гражданскому строительству и архитектуре, 1975.
6. Ashkinadze G.N. Structures behavior of large-panel buildings under vibrations (Overview). Research Proceedings of Central Research Institute for Experimental Design (CNIIEHP) series «Structures of residential and public buildings». Moscow: Center for Scientific and Technical Information for Civil Engineering and Architecture. 1975. (In Russian).
7. Соснин А.В. Методика двухстадийного расчета армирования элементов железобетонных каркасных зданий и сооружений на действие сейсмических сил с применением концепции нелинейного статического анализа. Ч. 1: Постановка задачи, структура методики, информационная база исследования и стратегия определения параметров зон пластичности. // Вестник ЮУрГУ. Серия «Строительство и архитектура». 2018. Т. 18. № 1. С. 5–31.
7. Sosnin A.V. A two-step-state reinforcement estimation technique of RC frame buildings and structures members under seismic loads using the pushover analysis conception. Part 1: Research objective, technique framework, research info base and determination approach of hinge zones features. Vestnik YUUrGU series «Stroitel’stvo i arhitektura». 2018. Vol. 18. No. 1, pp. 5–31. (In Russian). DOI:  10.14529/build180101
8. Шапиро Г.А., Симон Ю.А., Ашкинадзе Г.Н., Захаров В.Ф., Барков Ю.В. Вибрационные испытания зданий / Госкомитет по делам строительства и архитектуры при Госстрое СССР, ­ЦНИИЭП жилища / Под ред. Г.А. Шапиро. М.: Стройиздат, 1972. 160 с.
8. Shapiro G.A., Simon Yu.A., Ashkinadze G.N., Zaharov V.F., Barkov Yu.V. Vibratsionnye ispytaniya zdanii / Goskomitet po delam stroitel’stva i arkhitektury pri Gosstroe SSSR, TsNIIEP zhilishcha; pod red. G.A. Shapiro [In-situ vibration tests of buildings. State Committee for Construction and Architecture under the USSR State Construction Committee, Central Research Institute for Experimental Design (CNIIEHP); edited by G.A. Shapiro]. Moscow: Stroyizdat. 1972. 160 p.
9. Шапиро Г.А., Ашкинадзе Г.Н., Захаров В.Ф., Симон Ю.А. Исследование нелинейной работы конструкций жилых и общественных зданий с помощью мощных вибрационных машин. М.: ЦНТИ по гражданскому строительству и архитектуре, 1969. 78 с.
9. Shapiro G.A., Ashkinadze G.N., Zaharov V.F., Simon Yu.A. Issledovanie nelineinoi raboty konstruktsii zhilykh i obshchestvennykh zdanii s pomoshch’yu moshchnykh vibratsionnykh mashin [Investigation of nonlinear structures behavior of residential and civil buildings using powerful random vibration machines]. Moscow: Center for Scientific and Technical Information for Civil Engineering and Architecture. 1969. 78 p. (In Russian).
10. Соснин А.В. К вопросу учета диссипативных свойств многоэтажных железобетонных каркасных зданий массового строительства при оценке их сейсмостойкости // Современная наука и инновации. 2017. № 1 (17). С. 127–144.
10. Sosnin A.V. About dissipation properties of multi-story RC frame buildings of large-scale construction projects at their earthquake-resistance estimation. Sovremennaya nauka i innovacii. 2017. No. 1 (17), pp. 127–144. (In Russian).
11. Айзенберг Я.М., Килимник Л.Ш. О критериях предельных состояний и диаграммах «восстанавливающая сила – перемещение» при расчетах на сейсмические воздействия. Сб. ст. исследований ЦНИИСК им. В.А. Кучеренко «Сейсмостойкость зданий и инженерных сооружений» / Под ред. И.И.  Гольденблата. М.: Стройиздат, 1972. С. 46–60.
11. Ajzenberg Ya.M., Kilimnik L.Sh. About criteria of limit states and «restoring force – displacement» format diagrams for calculation estimates under seismic actions. Research Proceedings of Central Scientific Research Institute for Building Structures named for the V.A. Kucherenko «Earthquake-resistance of buildings and engineering structures»; edited by I.I. Gol’denblat. Moscow: Stroyizdat. 1972, pp. 46–60. (In Russian).
12. Соснин А.В. Информационная база и формула методики двойного расчета сейсмостойких железобетонных каркасных систем с применением концепции нелинейного статического анализа // Жилищное строительство. 2017. № 12. С. 37–49.
12. Sosnin A.V. Infobase and formula of a two-step-state computation technique of RC earthquake-resistance frame systems using the pushover analysis conception. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12. pp. 37–49. (In Russian).
13. Соснин А.В. Об алгоритме уточнения коэффициента допускаемых повреждений K1 по кривой несущей способности для проектирования железобетонных каркасных зданий массового строительства в сейсмических районах // Жилищное строительство. 2017. № 1–2. С. 60–70.
13. Sosnin A.V. About a refinement procedure of seismic-force-reduction factor K1 using a Pushover curve for earthquake-resistance estimation of RC LSC frame buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 60–70. (In Russian).
14. Bilgin H. Seismic performance evaluation of an existing school building in turkey. The 9-th International Congress on Advances in Civil Engineering. 27–30 September 2010. Karadeniz Technical University. Trabzon, Turkey. 9 p.
15. Соснин А.В. Об особенностях методологии нелинейного статического анализа и его согласованности с базовой нормативной методикой расчета зданий и сооружений на действие сейсмических сил // Вестник ЮУрГУ. Сер. «Строительство и архитектура». 2016. Т. 16. № 1. С. 12–19. DOI:  10.14529/build160102
15. Sosnin A.V. About Pushover analysis features and its coherence with the standard calculation procedure (CSM) of building and structures under seismic loads. Vestnik YUUrGU series «Stroitel’stvo i arhitektura». 2016. Vol. 16. No. 1, pp. 12–19. (In Russian). DOI: 10.14529/build160102
16. Айзенберг Я.М., Килимник Л.Ш. О критериях оптимального проектирования и параметрах предельных состояний при расчете на сейсмические воздействия // Строительная механика и расчет сооружений. 1970. № 6. С. 29–34.
16. Ajzenberg Ya.M., Kilimnik L.Sh. About optimal design criteria and limit states parameters for calculation estimates under seismic actions. Stroitel’naya mekhanika i raschet sooruzhenij. 1970. No. 6, pp. 29–34. (In Russian).
17. Goel R.K., Chopra A.K. Period formulas for moment-resisting frame buildings. Journal of Structural Engineering. 1997. No. 123, pp. 1454–1461. DOI: 10.1061/(ASCE)0733-9445(1997)123:11(1454)
18. Турсумуратов М.Т. Влияние жесткости неконструктивных элементов в многоэтажных сейсмостойких каркасных зданиях по данным вибрационных испытаний. Cб. тр. ЦНИИСК им. В.А. Кучеренко / Под ред. И.И. Гольденблата. 1974. № 33. С. 89–100.
18. Tursuuratov M.T. Influence of stiffness of non-structural elements in multi-storey earthquake-resistant frame buildings according to vibration test data. Research Proceedings of Central Scientific Research Institute for Building Structures named after V.A. Kucherenko; edited by I.I. Gol’denblat. Moscow: Stroyizdat. 1974. No. 33, pp. 89–100. (In Russian).
19. Колебания зданий при взрывах и землетрясениях. Сб. трудов № 6 (16). Казахский ПромстройНИИпроект / Под ред. Т.Ж. Жунусова. Алма-Ата: Казахстан, 1972. 200 с.
19. Buildings vibration during explosions and earthquakes. Proceedings of Kazakh PromstroyNIIproekt. Edited by T.Zh. Zhunusov. Alma-Ata: Kazahstan. 1972. 200  p. (In Russian).
20. Suda K., Satake N., Ono J., Sasaki A. Damping properties of buildings in japan. Journal of Wind Engineering and Industrial Aerodynamics. 1996. Vol. 59. Iss. 2–3, pp. 383–392.
21. Zhang Zh., Cho Ch. Experimental study on damping ratios of in-situ buildings. World International Journal of Mechanical and Mechatronics Engineering. 2009. Vol. 3. No. 2. 5 p.
22. Di Sarno L., Manfredi G. Seismic retrofitting of existing RC frames with buckling restrained braces. ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. December 9–11, 2009. San Francisco, California, United States. DOI: 10.1061/41084(364)68
23. Hisada T., Nakagawa K. Vibration tests on various types of building structures up to failure. Proceedings of the First World Conference on Earthquake Engineering. Berkeley. California. 1956. 10 p.
24. Panagiotakos B., Fardis М.N. Deformations of reinforced concrete members at yielding and ultimate. ACI Structural Journal. 2001. Vol. 98. No. 2. Title No. 98-S13, pp. 135–148.
25. Takeda T., Sozen M.A., Nielsen N.N. Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, ASCE. 1970. Vol. 96. Iss. 12, pp. 2557–2573.
26. Mander J.B., Priestley M.J.N., Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering. 1988. Vol. 114 (3). No. 8, pp. 1804–1826.
27. Kent D.C., Park R. Flexural members with confined concrete. Journal of Structural Division, ASCE. 71. Vol. 97. No. ST7. PROC paper 8243, pp. 1969–1990.
28. Paulay T., Priestley M.J.N. Seismic design of reinforced concrete and masonry buildings. New York: John Wiley & Sons, Inc., 1992. 744 p.
29. Freeman S.A., Nicoletti J.P., Tyrell J.V. Evaluations of existing buildings for seismic risk: a case study of Puget Sound Naval shipyard, Bremerton. Washington. Proceedings of the U.S. National Conference of Earthquake Engineering, EERI. Berkeley. California. 1975, pp. 113–122.
30. Miranda E., Bertero V. Evaluation of strength reduction factors for earthquake-resistant design. Earthquake Engineering & Structural Dynamics. 1994. No. 10 (2), pp. 357–379. DOI: 10.1193/1.1585778
31. Newmark N.M., Hall W.J. Earthquake spectra and design. Earthquake Engineering Research Institute, EERI. Berkeley, California, 1982. 103 p.
32. Васильев А.П., Быченков Ю.П., Тябликов Ю.Е. Прочность стыков и узлов железобетонных каркасов многоэтажных зданий при нагрузках типа сейсмических // Бетон и железобетон. 1968. № 8. С. 1–2.
32. Vasil’ev A.P., Bychenkov Yu.P., Tyablikov Yu.E. Strength of joints and splices of RC multi-storey frame buildings under seismic loads. Beton i zhelezobeton. 1968. No. 8, pp. 1–2. (In Russian).
33. Корчинский И.Л., Бородин Л.А., Гроссман А.Б. и др. Сейсмостойкое строительство зданий / Под ред. И.Л. Корчинского. М.: Высшая школа, 1971. 320 с.
33. Korchinskiy I.L., Borodin L.A., Grossman A.B. et al. Seismostoikoe stroitel’stvo zdanii [Earthquake-resistant construction of buildings. Edited by I.L. Korchinskij]. Moscow: Vysshaya shkola. 1971. 320 p.
34. Золотков А.С. Сейсмостойкость монолитных зданий. Кишинев: Картя Молдовей, 2000. 284 с.
34. Zolotkov A.S. Seismostoikost’ monolitnykh zdanii [Earthquake-resistance of reinforced concrete site-cast buildings]. Kishinev: Kartya Moldovej. 2000. 284 p. (In Russian).
35. Абдурашидов К.С., Айзенберг Я.М., Жунусов Т.Ж. и др. Сейсмостойкость сооружений. М.: Наука, 1989. 192 с.
35. Abdurashidov K.S., Ajzenberg Ya.M, Zhunusov T.Zh. et al. Seismostoikost’ sooruzhenii [Earthquake-resistance of structures]. Moscow: Nauka. 1989. 192 p.
36. Duan L., Cooper T.R. Displacement ductility capacity of reinforced concrete columns. ACI Concrete Int. 1995. Vol. 17. No. 11, pp. 61–65.
37. Konstandakopoulou F., Hatzigeorgiou G., Evangeli-nos K., Tsalis Th., Nikolaou I. A new method to evaluate the post-earthquake performance and safety of reinforced concrete structural frame systems. Infrastructures. 2020. Vol. 5 (2). No. 16. 15 p. DOI: 10.3390/infrastructures5020016
38. Мкртычев О.В., Джинчвелашвили Г.А. Проблемы учета нелинейностей в теории сейсмостойкости (гипотезы и заблуждения). М.: МГСУ, 2012. 192 с.
38. Mkrtychev O.V., Dzhinchvelashvili G.A. Problemy ucheta nelineinostei v teorii seismostoikosti (gipotezy i zabluzhdeniya) [Accounting problems of nonlinear behavior in earthquake-resistance theory (hypotheses and mistakes)]. Moscow: Publishing by MGSU. 2012. 192 p.
39. Шапиро Г.А., Захаров В.Ф., Оганян А.А., Фрайнт М.Я. Анализ работы железобетонных рамных узлов. Сб. тр. ЦНИИЭП жилища «Исследование работы конструкций жилых зданий». М.: ЦНТИ по гражданскому строительству и архитектуре, 1974. С. 15–22.
39. Shapiro G.A., Zaharov V.F., Oganyan A.A., Frajnt M.Ya. Behavior analysis of reinforced concrete frame joints. Research proceedings of central research institute for experimental design (CNIIEHP) series «Research of structures behavior of residential buildings». Moscow: Center for Scientific and Technical Information on Civil Engineering and Architecture. 1974, pp. 15–22. (In Russian).
40. Оганян А.А. Метод расчета железобетонных рам с податливыми связями элементов с узлами на горизонтальные инерционные нагрузки. Сб. тр. ­ЦНИИЭП жилища «Исследование работы конструкций жилых зданий». М.: ЦНТИ по гражданскому строительству и архитектуре, 1974. С. 23–34.
40. Oganyan A.A. A calculating procedure of reinforced concrete 2-D frames with ductile connections of members in joints under horizontal inertia loads. Research proceedings of Central research institute for experimental design (CNIIEHP) series «Research of structures behavior of residential buildings». Moscow: Center for Scientific and Technical Information on Civil Engineering and Architecture. 1974, pp. 23–34.
41. Кукебаев М.М. Натурные испытания железобетонного сборного каркаса для сейсмостойких зданий. Сб. тр. ЦНИИСК им. В.А. Кучеренко «Сейсмостойкость сборных крупноэлементных зданий» / Под общ. ред. С.В. Полякова. М.: Госстройиздат, 1963. С. 41–52. (In Russian).
41. Kukebaev M.M. In-situ tests of a precast reinforced concrete frame for earthquake-resistant buildings. Research proceedings of Central scientific research institute for building structures named after V.A.  Kucherenko «Earthquake-resistance of precast concrete buildings from large-sized elements»; edited by S.V. Polyakov. Moscow: Gosstroyizdat. 1963, pp. 41–52.
42. Murty C.V.R., Goswami R., Vijayanarayanan A.R., Mehta V.V. Some concepts in earthquake behavior of buildings. https://www.engineeringbookspdf.com/ (accessed date 12.04.2016)
43. Jeong S.-H., Elnashai A.S. Analytical assessment of an irregular RC frame for full-scale 3D pseudo-dynamic testing. Part I: Analytical model verification. Journal of earthquake engineering. 2005. Vol. 9. No. 1, pp. 95–128.
44. Ockleston A.J. Tests on the old dental hospital, Johannesburg; The effect of floors and walls on the behavior of reinforced concrete frameworks subject to horizontal loading. The Concrete Association of South Africa, Johannesburg, November. 1956. Paper 3. 20 p.
45. Lee H.S., Woo S.W., Heo Y.S., Song J.G. Pushover tests of 1:5 scale 3-story reinforced concrete frames. KCI Concrete Journal. 2000. Vol. 11. No. 3, pp. 165–174.
46. Pinho R., Elnashai A.S. Dynamic collapse testing of a full-scale four storey RC frame. ISET Journal of Earthquake Technology. 2000. Paper No. 406. Vol. 37. No. 4, pp. 143–164.
47. Calvi G.M., Magenes G., Pampanin S. Experimental test on a three storey RC frame designed for gravity only. The 12-th European conference on earthquake engineering, 2002. Paper No. 727, 9 p.
48. Dolce M., Cardone D., Ponzo F.C., Valente C. Shaking table tests on reinforced concrete frames without and with passive control systems. Earthquake Engineering and Structural Dynamics. 2005. Vol. 34, pp. 1687–1717.
49. Chopra A.K. Dynamics of structures: Theory and applications of earthquake engineering. Fifths edition. Person Education Limited, 2020. 994 p.
50. Соснин А.В. О прогнозировании потерь от повреждения землетрясением объектов массового строительства // Проблемы анализа риска. 2017. № 4. С. 50–56.
50. Sosnin A.V. About losses prediction from damage of large-scale-construction projects caused by an earthquake. Problemy analiza riska. 2017. No. 4, pp. 50–56 (In Russian).
51. Рудый В.С., Черкашин А.В., Коноводченко В.И. Исследование колебаний крупноблочного здания со стенами из пильного камня-известняка. Сб. ст. исследований ЦНИИСК им. В.А. Кучеренко «Сейсмостойкость зданий и инженерных сооружений» / Под ред. И.И. Гольденблата. М.: Стройиздат, 1972. С. 46–60.
51. Rudyj V.S., Cherkashin A.V., Konovodchenko V.I. Vibrations investigation of a large-block building with walls of saw-made limestone. Research proceedings of Central scientific research institute for building structures named after V.A. Kucherenko; edited by I.I. Gol’denblat. Moscow: Stroyizdat. 1972, pp. 46–60. (In Russian).
52. Джинчвелашвили Г.А., Мкртычев О.В., Ковальчук О.А., Колесников А.В., Соснин А.В. Идентификация расчетных моделей при динамических воздействиях. М.: АСВ, 2018. 300 с. DOI: 10.22337/9785432302045
52. Dzhinchvelashvili G.A., Mkrtychev O.V., Koval’-chuk O.A., Kolesnikov A.V., Sosnin A.V. Identifikatsiya raschetnykh modelei pri dinamicheskikh vozdeistviyakh [Identification of computational models under dynamic actions]. Moscow: ASV. 2018. 300 c. DOI: 10.22337/9785432302045
53. Poluraju P., Nageswara Rao P.V.S. Pushover analy-sis of reinforced concrete frame structure using SAP2000. International Journal of Earth Sciences and Engineering. 2011. Vol. 04. No. 6. SPL, pp. 684–690.

For citation: Sosnin A.V. Comparison of allowed damages with a purpose of calculating procedures used to design of RC frame buildings loaded by seismic forces. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 1–2, pp. 50–80. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-1-2-50-80

About the Safety of Mass Residential and Public Buildings in Case of Dangerous Natural Influences

Number of journal: 1-2-2021
Autors:

Maslyaev A.V.

DOI: https://doi.org/10.31659/0044-4472-2021-1-2-40-49
УДК: 699.841

 

AbstractAbout AuthorsReferences
The obligation for the construction system of Russia to prevent human casualties in construction projects under the influence of hazardous natural phenomena is clearly indicated in paragraph 1 of Article 1 of Federal Law No. 384-FZ “Technical regulations on the safety of buildings and structures», where it is clearly stated that « this Federal law is adopted in order to protect the life and health of citizens, the property of individuals or legal entities, state or municipal property...». However, the regulatory level of risk in GOST 31937–2011 «Buildings and structures. Rules for inspection and monitoring of technical condition» allows human casualties in mass residential and public buildings when exposed to dangerous natural phenomena. It is known that when calculating mass residential and public buildings only for the minimum normative values of dangerous impacts, human casualties cannot be avoided. Specialists know that the main characteristic of all natural hazards on Earth (earthquakes, floods, etc.) is cyclical in their manifestation (significant declines are necessarily replaced by significant increases). That is why, for example, settlements as the largest capital construction projects in Russia with a service life of one thousand years or more should be calculated only for the maximum impacts of natural hazards. However, the standard set of seismic maps OSR-2015 for certain regions of Russia shows only the average (underestimated) values of such essential characteristics of earthquakes as intensity and repeatability.
A.V. MASLYAEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Research Seismic Laboratory (27, bldg. A. r. 51, Zemlyachki Street, Volgograd, 400117, Russian Federation)

1. Maslyaev A.V. Seismic protection of settlements in Russia with due regard tor “Unpredictability of the next dangerous natural phenomenon”. Zhilischnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 43–47. (In Russian).
2. Maslyaev A.V. Russian settlements are not protected against the impact of natural hazards. Zhilischnoe Stroitel’stvo. [Housing Construction]. 2019. No. 5, pp. 36–42. (In Russian). DOI: htts://doi.org/10.31659/0044-4472-2019-5-36-42
3. Glovatskaya N., Lazurenko S., Zhukova I. Human security in society: novye landmarks of socio-economic development. Voprosy ekonomiki. 1992. No. 1, pp. 41–52. (In Russian).
4. Aptikaev F.F. New building Codes: one step forward, two steps backward. Geology and Geophysics of the South of Russia. 2020. Vol. 10. No. 2, pp. 71–81. (In Russian).
5. Maslyaev A.V. Russian construction system does not recognize the impact of repeated earthquakes on construction sites. American Scientific Journal. 2020. No. 38, pp. 41–49. (In Russian). DOI: 10.31618/asj.2707-9864.2020.1/38/12
6. Aptikaev F.F., Maslyaev A.V. Protection of life and health of people is not recognized as the main goal in the construction of buildings in Russia. Zhilischnoe Stroitel’stvo. [Housing Construction]. 2019. No. 11, pp. 58–64. DOI: htts: //doi.org/10.31659/0044-4472- 2019-11-58-64
7. Maslyaev A.V. Author’s paradigm of the Russia construction system. Zhilischnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 65–71. DOI: htts://doi.org/10.59/0044-4472-2020-1-2-65-71.
8. Maslyaev A.V. Dependence of the citys earthquake protection on level of responsibility of residential of residential buildings. Prirodnye i tekhnogennye riski. Bezopasnost sooruzhenii. 2013. No. 5, pp. 29–32. (In Russian).
9. Maslyaev V.N., Maslyaev A.V. Influence of the spaceplanning decisions of the building on the reaction of people during an earthquake. Zhilischnoe Stroitel’stvo [Housing Construction]. 1991. No. 7, pp. 9–10. (In Russian).
10. Ulomov V.I., Shumilina L.S. The Complete set of cards of the general seismic division into districts of territory of Russian Federation OSR-97. Scale 1: 8,000,000. An explanatory note and the list of cities and the settlements located in seismodangerous areas. Moscow: Ministry of a science and technologies of the Russian Federation. RAN. Incorporated institute of physics of the Earth of O.Yu. Schmidt. 1999.
11. Maslyaev A.V. Seismic danger in territory of the Volgograd region is understated by the standard cards OSR-97 the Russian Federation at the expense of simplification of tectonic conditions. Seismostoikoe stroitelstvo. Bezopasnost sooruzhenii. 2011. No. 6, pp. 46–49.(In Russian).
12. Maslyaev A.V. The duilding system of the Volgograd oblast ignores rotecttion of life of people in buildings at earthquake. Zhilischnoe Stroitel’stvo. [Housing Construction]. 2019. No. 1–2, pp. 55–58.(In Russian).
13. Maslyaev A.V. Short Live of Residential Buildings in Settlements of Russia. Zhilischnoe Stroitel’stvo [Housing Construction]. 2017. No. 8, pp. 39–42. (In Russian).
14. Maslyaev A.V. Construction system of Russia does not protect the life and health view of people in settlements during the earthquake. Zhilischnoe Stroitel’stvo [Housing Construction]. 2018. No. 9, pp. 60–63. (In Russian).
15. Maslyaev A.V. Calculation of buildings and structures to preserve the life and health of people during an earthquake. Zhilischnoe Stroitel’stvo [Housing Construction]. 2009. No. 8, pp. 33–35. (In Russian).
16. Maslyaev A.V. Inadequacy of federal laws and regulations documents of the Russian Federation in the absence of a list of “objects of protection” in case of dangerous Native and technogenic impacts. Zhilischnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 44–48.
17. Maslyaev A.V. The increase in public health losses in buildings during earth earthquake in federal laws and regulations of the Russian Federation. Zhilischnoe Stroitel’stvo [Housing Construction]. 2017. No. 4, pp. 43–47.

For citation: Maslyaev A.V. About the safety of mass residential and public buildings in case of dangerous natural influences. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 1–2, pp. 40–49. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-1-2-40-49

Post-Modernism in the Architecture of Medium-Room Residential Buildings in the Regions of Russia

Number of journal: 1-2-2021
Autors:

Shirokova E.O.

DOI: https://doi.org/10.31659/0044-4472-2021-1-2-34-39
УДК: 72.036

 

AbstractAbout AuthorsReferences
The article provides an overview of postmodern architecture on the example of medium-rise urban residential buildings in large cities in various regions of Russia. At present, postmodernism in Russian regions continues to play a significant role in the design and construction of residential buildings in historical city centers, while architects strive to tactfully fit into the historical context, since here the problem of combining old and new architecture remains paramount, which is one of the most important in the theory and practice of the latest Russian architecture. There is still a need to comprehend creative approaches to the design of urban dwellings from the point of view of its competent inclusion of the building into the historical environment. Using the method of comparative analysis, it becomes possible to identify the architectural features of middle-rise residential buildings. Consideration of specific domestic examples allows us to determine the main directions of the search for leaders of postmodernism. It is determined that postmodernism as a multi-vector style allows an architect in each case to take into account regional conditions and not disturb the existing historical environment with a new object. Stylistic searches in all six directions identified by the theorist of postmodern architecture C. Jenks, associated with the appeal to historicism, partial historicism, neo-traditionalism, contextualism and metaphor in the design of residential buildings according to individual projects, are noted.
E.O. SHIROKOVA, Master of Architecture (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Nizhny Novgorod State University of Architecture and Civil Engineering (65, Il'inskaya Street, Nizhny Novgorod, 603950, Russian Federation)

1. Dzhenks Ch. Yazyk arkhitektury postmodernizma [Language of architecture of postmodernism]. Moscow: Stroyizdat. 1985. 136 p.
2. Ivaneko T.Yu. A bit of modernity in the cold snows: Hotel Marriott in Novosibirsk. Sovremennaya arkhitektura etc. 2014. No. 6, pp. 90–115. (In Russian).
3. Ikonnikov A.V. Arkhitektura XX veka [Architecture of the XX century. Utopias and reality]. Vol. 2. Moscow: Progress-Traditsiya. 2002. 669 p.
4. Kiselnikova D. Yu. Postmodernism in the architecture of Novosibirsk in the 1990–2010. Privolzhskii nauchnyi zhurnal. 2018. No. 1, pp. 139–144. (In Russian).
5. Orel’skaya O.V., Khudin A.A. Postmodernizm [Postmodernism]. Nigniy Novgorod: OOO «Begemot–NN».2019. 240 p.
6. Khudin A.A. Architecture of urban dwelling houses of the postmodern era abroad. Zhilishchnoe stroitel’stvo [Housing Construction]. 2017. No. 8, pp. 30–33. (In Russian).
7. Khudin A.A. Postmodernism in the architecture of Moscow and St. Petersburg: similarities and differences. Privolzhskii nauchnyi zhurnal. 2015. No. 3, pp. 161–165. (In Russian).
8. Khudin A.A. Similarity and difference between postmodernism in foreign and Russian architecture. Privolzhskii nauchnyi zhurnal. 2014. No. 1, pp. 89–93. (In Russian).
9. Dobritsyna I.A. Poetika postmodernistskoi arkhitektury [Poetics of postmodern architecture. In kN. Theory of composition as poetics of architecture]. Moscow: Progress-Traditsiya. 2002. 568 p.
10. Bondarenko I.A. Sovremennoe i nesovremennoe v gorodskoi zastroike [Modern and unmodern in urban development]. Moscow; Saint Peterburg: Nestor-Istoriya. 2014. 23 p.
11. Esaulov G.V. Ot polistilizma k global’nomu regionalizmu [From a polistilizm to global regionalism]. Moscow; Saint Peterburg: Nestor-Istoriya. 2012. 247 p.
12. Hudin A.A. Author’s concepts in architecture of the western postmodernism. Privolzhskii nauchnyi zhurnal. 2014. No. 2, рp. 120–124. (In Russian).
13. Ryabushin A.V., Shukurova A.N. Tvorcheskie protivorechiya v arkhitekture Zapada [Creative contradictions in the architecture of the West] Moscow: Stroyizdat. 1986. 272 p.

For citation: Shirokova E.O. Postmodernism in the architecture of middle-rise residential buildings in the regions of Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 1–2, pp. 34–39. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-1-2-34-39

Reconstruction of the Balneary of the Architectural Ensemble of the Resort "Lake Karachi"

Number of journal: 1-2-2021
Autors:

Pichugin A.P.,
Khritankov V.F.,
Smirnova O.E.,
Pchelnikov A.V.,
Shatalov A.A.

DOI: https://doi.org/10.31659/0044-4472-2021-1-2-26-33
УДК: 72.03:726.5

 

AbstractAbout AuthorsReferences
This article describes the work on the reconstruction and restoration of one of the most important elements of the resort in terms of technology – mud Baths. It is shown how corrosive environments-silt mud and concentrated salt solution (brine) – contributed to the intensive destruction of building structures and parts of the building, and how using scientific developments it was possible to restore the integrity of this water-mud complex, ensuring its architectural and decorative appearance and performance. During the period of renovation and reconstruction, much attention was paid to preserving the decorative elements of the facade and interior of the water and mud treatment facility. Certain difficulties arose when strengthening concrete and stone structures that were subjected to corrosion destruction. This problem was solved by impregnating stone and concrete massifs with polymer-silicate protective impregnating compounds with additives of dehydrol and nanoscale additives, which provided deep penetration of the strengthening composition and increased strength and performance of the protected materials. Nanoscale additives were also used to protect metal pipelines and process tanks, which improved the adhesion of protective coatings and their corrosion resistance. During the repair and restoration works, it was possible to completely reconstruct the water-mud treatment complex, giving it its original architectural and decorative appearance, ensuring the operation of this complex, opening new modern treatment rooms and areas for physiotherapy treatment of resort patients, increasing the throughput capacity by three times.
A.P. PICHUGIN1, Doktor of Sciences (Engineering),
V.F. KHRITANKOV1, Doktor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
O.E. SMIRNOVA2, Candidate of Sciences (Engineering);
A.V. PCHELNIKOV1, Candidate of Sciences (Engineering),
A.A. SHATALOV1, Postgraduate Student

1 Novosibirsk State Agricultural University (160, Dobrolyubova Street, Novosibirsk, 630039, Russian Federation)
2 Novosibirsk State University of Architecture and Civil Engineering (113, Leningradskaya Street, Novosibirsk, 630008, Russian Federation)

1. Khritankov V.F., Pichugin A.P., Pimenov E.G., Smirnova O.T. Reconstruction of the architectural ensemble of the resort “Lake Karachi” in the Novosibirsk Region. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 4–5, pp. 33–38. (In Russian). DOI: https:// doi.org/10.31659/0044-4472-2020-4-5-33-38
2. Khritankov V.F., Pichugin A.N., Pchelnikov A.V., Smirnova O.E. Reconstruction of the main building of the architectural ensemble of the resort “Lake Karachi”. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 8, pp. 9–15. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-8-9-15
3. Subbotin O.S. Problems of preserving architectural and urban heritage in the conditions of a modern city (on the example of Krasnodar. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 7, pp. 35–40. (In Russian).
4. Bedov A.I., Znamenskiy V.V., Gabitov A.I. Otsenka tekhnicheskogo sostoyaniya, vosstanovlenie i usilenie osnovanii i stroitel’nykh konstruktsii ekspluatiruemykh zdanii i sooruzhenii [Assessment of technical condition, restoration and strengthening of bases and building structures of operated buildings and structures]. Moscow: ACV. 2014. 924 p.
5. Kievsky I.L., Leonov V.V. Forecasting of physical wear of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 7, pp. 17–20. (In Russian).
6. Schenkov A.S. Rekonstruktsiya istoricheskoi zastroiki v Evrope vo vtoroi polovine XX veka: Istoriko-kul’turnye problemy [Reconstruction of historical buildings in Europe in the second half of the XX century: Historical and cultural problems]. Moscow: LENAND. 2011. 280 p.
7. Kasyanov V.F. Rekonstruktsiya istoricheskoi zastroiki v Evrope vo vtoroi polovine XX veka: Istoriko-kul’tur-nye problemy [Reconstruction of residential buildings in cities]. Moscow: ASV. 2005. 224 p.
8. Goryachev O.M., Prykina L.V. Osobennosti vozvedeniya zdanii v stesnennykh usloviyakh [Features of construction of buildings in cramped conditions]. Moscow: Academia. 2003. 272 p.
9. Khimicheskie i mineral’nye dobavki v beton [Chemical and mineral additives in concrete]. Ed. A.V. Usherov-Marshak. Kharkiv: Kolorit. 2005. 280 p.
10. Pichugin A.P., Hritankov V.F., Smirnova O.E., Pimenov E.G., Nikitenko K.A. Protective and finishing compositions and compositions for repair work and ensuring the durability of buildings. Izvestiya vuzov. Stroitel’stvo. 2019. No. 9, pp. 109–122. (In Russian).
11. Solomatov V.I., Selyaev V.P. Khimicheskoe soprotivlenie kompozitsionnykh materialov [Chemical resistance of composite materials]. Moscow: Stroyizdat. 1987. 264 p.
12. Dolgova V.O. the Problem of preserving architectural and landscape objects of culture and historical heritage in small cities of Russia. Gradostroitel’stvo. 2013. No. 4 (26), pp. 73–77. (In Russian).
13. Hritankov V.F., Pichugin A.P., Smirnova O.E., Shatalov A.A. Use of nanoscale additives in concrete and construction solutions to ensure adhesion during repair work. Nauka o Zemle. 2019. No. 9, pp. 131–140. (In Russian).
14. Pchelnikov A.V., Khryanin V.N. Justification of factors affecting the wear of paint coatings. Vestnik IrGSKhA. 2017. No. 81/2, pp. 117–124. (In Russian).
15. Subbotin O.S., Hritankov V. F. Effective application of energy-saving structures and materials in low-rise residential buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2008. No. 12, pp. 20–23. (In Russian).
16. Pichugin A.P., Gorodetsky S.A., Bareev V.I. Korrozionnostoikie materialy dlya zashchity polov i inzhenernykh sistem sel’skokhozyaistvennykh zdanii i sooruzhenii [Corrosion-Resistant materials for protection of floors and engineering systems of agricultural buildings and structures]. Novosibirsk: NGAU–RAEN, 2010. 123 p.

For citation: Pichugin A.P., Khritankov V.F., Smirnova O.E., Pchelnikov A.V., Shatalov A.A. Reconstruction of the balneary of the architectural ensemble of the resort “Lake Karachi”. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 1–2, pp. 26–33. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-1-2-26-33

Architectural Heritage of Krasnodar Not Forgotten: Lost and Restored

Number of journal: 1-2-2021
Autors:

Subbotin O.S.

DOI: https://doi.org/10.31659/0044-4472-2021-1-2-18-25
УДК: 72.03:711.4.025 (470.620)

 

AbstractAbout AuthorsReferences
The main problems, associated with the preservation and restoration of monuments of architectural heritage of the city studied, are identified. Special attention is paid to the identity of regional architecture and the planning structure of the territory within the boundaries of a historical settlement of regional significance. The importance of preserving the architectural heritage in the moral education of the present and future generations was noted. The article highlights the issues of relations between various state authorities and the public. Architectural heritage monuments, both restored and irretrievably lost, as well as those in unsatisfactory condition, are considered. Great importance is given not only to the preservation of architectural heritage objects, but also to the preservation of historically valuable city-forming buildings and structures that form the historical environment. The practical significance lies in the fact that the research materials can be used as recommendations in the formation of programs for the preservation of this heritage.
O.S. SUBBOTIN, Doctor Architecture, (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kuban State Agrarian University named after I.T. Trubilin (13, Kalinina Street, Krasnodar, 350044, Russian Federation)

1. Subbotin O.S. Pamyatniki arkhitekturnogo naslediya Tobol’ska [Monuments of the architectural heritage of Tobolsk]. Zhilishnoe Stroitel’stvo [Housing Construction]. 2011. No. 10, pp. 48–50. (In Russian).
2. Bardadym V.P. Arkhitektura Ekaterinodara [Ekaterinodar’s architecture]. Krasnodar: Sovetskaya Kuban’. 2002. 256 p.
3. Subbotin O.S. Problems of preservation of architectural and town-planning heritage in the conditions of a modern city (on the example of Krasnodar). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 7, pp. 35–40. (In Russian).
4. Ekaterinodar–Krasnodar: Dva veka goroda v datakh, sobytiyakh, vospominaniyakh...: materialy k Letopisi [Ekaterinodar-Krasnodar: Two centuries of the city in dates, events, memories: ... materials to the Annals]. Krasnodar: Book publishing house. 1993. 800 p.
5. Fedosyuk Yu.A. Moskva v kol’tse Sadovykh [Moscow in the Sadovyh ring]. Moscow: Moskovskiy rabochiy. 1983. 447 p.
6. Bondar V.V., Markova O.N. Portret starogo goroda. Yekaterinodar na starinnykh otkrytkakh [Portrait of the old city. Yekaterinodar on old postcards]. Krasnodar: Publisher I. Platonov. 2011. 128 p.
7. Subbotin O.S. History of the architecture of Orthodox churches of the Black Sea coast of Russia. Zhilishnoe Stroitel’stvo [Housing Construction]. 2013. No. 10, pp. 18–22. (In Russian).
8. Kolesnikov A.G. Operetta v Krasnodare: letopis’ tvorcheskogo puti: vospominaniya [Operetta in Krasnodar: chronicle of the creative path: memoirs]. Moscow: Teatralis. 2005. 367 p.
9. Kuban’ v gody Velikoy Otechestvennoy voyny 1941–1945 [Kuban during the Great Patriotic War 1941–1945]. Krasnodar: Periodicals of the Kuban. 2005. 304 p.
10. Shakhova G.S. Ulitsy Krasnodara rasskazyvayut: v Karasunskom kute [The streets of Krasnodar tell: in the Karasunsky kut]. Krasnodar: Publishing and printing complexed. 2007. 196 p.
11. Subbotin O.S. Noble estates, mansions and villas in the structure of Kuban settlements (XIX–XX centuries). Zhilishnoe Stroitel’stvo [Housing Construction]. 2013. No. 7, pp. 36–40. (In Russian).
12. Kuban’ starozavetnaya [Old Testament Kuban]. Krasnodar: Tradition. 2012. 324 p.
13. Gangur N.A. Material’naya kul’tura Kubanskogo kazachestva [Material culture of the Kuban Cossacks]. Krasnodar: Tradition. 2009. Vol. 1. 288 p.
14. Subbotin O.S. Vazhneyshiye etapy osvoyeniya Kubani i strategiya yeye razvitiya [The most important stages in the development of the Kuban and the strategy of its development]. Vestnik MGSU. 2011. No. 2–2, pp. 14–18. (In Russian).

For citation: Subbotin O.S. Architectural heritage of Krasnodar not forgotten: lost and restored. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 1–2, pp. 18–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2021-1-2-18-25

https://www.traditionrolex.com/11