Личный кабинет

Analysis of the Cost of Fuel and Energy Resources During the Overhaul of an Apartment Building

Number of journal: 4-2024
Autors:

Korol' E.A.,
Zhuravleva A.A.

DOI: https://doi.org/10.31659/0044-4472-2024-4-47-52
УДК: 624.05:69.05

 

AbstractAbout AuthorsReferences
The study presents tools for calculating the consumption of fuel and energy resources when carrying out major repairs of a multi-apartment residential building. The purpose of the study is to reduce energy consumption during the work phase and increase the efficiency of the capital construction project. The methodological approaches of the study are based on calculation, analysis and comparison of the obtained values of consumption of fuel and energy resources when carrying out major repairs of an apartment building. Based on the results of the study, it was established that the structure of energy costs during major repairs is determined to a greater extent by the «machinery and mechanisms» consumer group, which may include a different number of subgroups. Analysis of the calculated values of consumption of fuel and energy resources showed that significant energy consumption during repair work is due to the mechanization of labor using construction machines (truck crane, truck) and equipment (roof burner, combined sprayer, etc.).
.A. KOROL', Doctor of Sciences (Engineering), Professor, Head of the Department of Housing and Communal Services (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. ZHURAVLEVA, Candidate of Sciences (Engineering), Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Davidyuk A.A., Bukavtsov O.V., Deryavko R.M. Program for extending the life of residential buildings in Moscow. Analysis of practical experience: advantages and disadvantages. Zhilishchnoe stroitel’stvo [Housing Constructions]. 2018. No. 10, pp. 49–54. (In Russian).
2. Migunov I.N. Assessment of the realization of a national project for improving housing conditions of the population. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 8, pp. 40–47. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-8-40-47
3. Korol’ E.A., Zhuravleva A.A., Petrosyan R.S. Determination of emissions of harmful substances during operation machines and mechanisms on the construction site. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 8, pp. 57–61. (In Russian). DOI: 10.33622/0869-7019.2022.08.57-61
4. Korol’ E.A., Zhuravleva A.A. Impact of the work of energy consumers during the construction of low-rise residential buildings on the environment. Academia. Arkhitektura i stroitel’stvo. 2021. No. 3, pp. 108–114. (In Russian). DOI: 10.22337/2077-9038-2021-3-108-114
5. Shubin I.L., Umnyakova N.P., Matveeva I.V., Andrianov K.A. Quality of the building envelope is the basis for creating an environmentally friendly environment of vital activity. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 10–15. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-10-15
6. Sheina S.G., Umnyakova N.P., Fedyaeva P.V., Minenko E.N. The best European experience in implementing energy-saving technologies in the housing stock of the Russian Federation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 29–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-29-344
7. Rimshin V.I., Shubin I.L., Erofeev V.T., Avetisyan A.A. Automation of the life cycle of buildings during reconstruction and major repairs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 7, pp. 6–12. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-7-6-12
8. Shirazi M., Salimi M., Hosseinpour M. Improving sustainability of oil industry via integration with geothermal energy: analysis of strategies. Journal оf Energy Management and Technology (JEMT). 2024. Vol. 8, pp. 1–8. DOI: 10.22109/JEMT.2023.365829.1410
9. Olanrewaju O.A. Application of an integrated model to a construction and building industry for energy- saving assessment. South African Journal of Industrial Engineering. 2021. Vol. 32. No. 2, pp. 110–123. DOI: 10.7166/32-2-2321
10. Buchner K., Uhlig, J. Discussion on Energy Saving and Emission Reduction Technology of Heat Treatment Equipment. Berg Huettenmaenn Monatsh. 2023. Vol. 168, pp. 109–113 DOI: 10.1007/s00501-023-01328-5
11. Shen S. Application of Green Energy-Saving Technologies in Green Buildings in Real Estate Construction. Highlights in Science, Engineering and Technology. 2023. Vol. 79, pp. 45–50. DOI: 10.54097/hset.v79i.15090
12. Chen Y., Ma L., Zhu Z. The environmental-adjusted energy efficiency of China’s construction industry: a three-stage undesirable SBM-DEA model. Environ Sci Pollut Res. 2021. Vol. 28, pp. 58442–58455. (In Russian). DOI: 10.1007/s11356-021-14728-2
13. Korol’ E.A., Zhuravleva A.A. Determining the consumption of fuel and energy resources during mechanized work in low-rise construction. Vestnik MGSU. 2020. No. 5, pp. 712–728. (In Russian). DOI: 10.22227/1997-0935.2020.5.712-728

For citation: Korol' E.A., Zhuravleva A.A. Analysis of the cost of fuel and energy resources during the overhaul of an apartment building. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 47–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-47-52

Design of Earthquake-Resistant Buildings. New Generation Standards

Number of journal: 4-2024
Autors:

Mkrtychev O.V.,
Lokhova E.M.

DOI: https://doi.org/10.31659/0044-4472-2024-4-42-46
УДК: 699.841

 

AbstractAbout AuthorsReferences
In modern practice of designing buildings in seismic areas, there is a constant increase in the level of detail of models, however, calculations often ignore the fact that seismic impact is a random process with large variability of parameters, and the interaction of the structure with a nonlinearly deformable foundation is not always taken into account correctly. In addition, when calculating seismic impacts, it is necessary to use modern material models that take into account the nonlinear nature of deformation under cyclic loads. All the factors described above indicate the need to develop complex methods for calculating seismic impacts. The article describes an integrated approach to the calculations of buildings and structures being built in seismic areas, and also provides the main theses for the STO “Construction in seismic areas. Basic provisions”. The section “materials used and research methods” presents the key components of the proposed methodology (nonlinear calculation method, material models and foundation model). The section “research results” presents the main provisions of the proposed two-level calculation. In conclusion, it was concluded that it is necessary to update modern standards and methods of calculation for seismic impacts.
O.V. MKRTYCHEV, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.M. LOKHOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Мкртычев О.В. Развитие прямых нелинейных динамических методов расчета на сейсмические воздействия // Промышленное и гражданское строительство. 2022. № 7. С. 12–16. DOI: 10.33622/0869-7019.2022.07
1. Mkrtychev O.V. Development of direct nonlinear dynamic methods for calculating seismic impacts. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 7, pp. 12–16. (In Russian). DOI: 10.33622/0869-7019.2022.07
2. Рекунов С.С., Чураков А.А. Исследование вопросов надежности сооружений разных типов при экстремальных воздействиях. Ч. 1. // Инженерно-строительный вестник Прикаспия. 2023. № 2 (44). С. 57–61. DOI: 10.52684/2312-3702-2023-44-2-57-61
2. Rekunov S.S., Churakov A.A. Study of reliability issues of structures of different types under extreme influences. Part one. Inzhenerno-stroitel’nyj vestnik. 2023. No. 2 (44), pp. 57–61. (In Russian). DOI: 10.52684/2312-3702-2023-44-2-57-61
3. Murray Y.D. Users manual for LS-DYNA. Concrete material model 159-HRT-05-062. 2007. 77 p.
4. Тяпин А.Г. Различия в нормативных подходах к расчету на сейсмические воздействия гражданских сооружений и сооружений АЭС. Ч. 2. Взаимодействие сооружения с основанием // Сейсмостойкое строительство. Безопасность сооружений. 2014. № 6. C. 14–17.
4. Tyapin A.G. Differences in regulatory approaches to the calculation of seismic impacts of civil structures and nuclear power plant structures. Part II. Interaction of the structure with the foundation. Sejsmostojkoe stroitel’stvo. Bezopasnost’ sooruzhenij. 2014. No. 6, pp. 14–17. (In Russian).
5. Arnkjell Løkke, Anil K. Chopra direct-finite-element method for nonlinear earthquake analysis of concrete dams including dam–water–foundation rock interaction. Pacific Earthquake Engineering Research Center-Headquarters at the University of California Report. 2019. No. 2. DOI: https://doi.org/10.55461/CRJY2161
6. Dhrubajyoti Datta, Amit H. Varma, Jungil Seo and Justin Coleman. Investigation of interface non-linearity on Non-linear Soil Structure Interaction analyses. 24th International Conference on Structural Mechanics in Reactor Technology, SMiRT-24. https://www.researchgate.net/publication/326316988_Investigation_of_interface_non-linearity_on_Non-linear_Soil_Structure_Interaction_analyses (Date of access 25.03.24)
7. Justin Coleman, Chandrakanth Bolisetti. Time-domain soil-structure interaction analysis of nuclear facilities. Nuclear Engineering and Design. No. 298, pp. 264–270. https://www.researchgate.net/publication/290396062_Time-domain_soil-structure_interaction_analysis_of_nuclear_facilities?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19 (Date of access 25.03.24)
8. Мкртычев О.В., Дударева М.С. Учет совместной работы железобетонного здания с грунтом основания при интенсивном сейсмическом воздействии // Строительство: наука и образование. 2018. Т. 8. № 2 (28). С. 37–48.
8. Mkrtychev O.V., Dudareva M.S. Accounting for the joint work of a reinforced concrete building with the foundation soil under intense seismic influence. Stroitel’stvo: nauka i obrazovanie. 2018. Vol. 8. No. 2 (28), pp. 37–48. (In Russian).
9. Mkrtychev O.V., Reshetov A.A. Modeling Worst-case Earthquake Accelerograms for Buildings and Structures. Advances in Engineering Research. 2016. Vol. 72, pp. 89–94. DOI: 10.2991/aece-16.2017.21
10. Mkrtychev O.V., Busalova M.S. Assessment of seismic resistance of the reinforced concrete building by nonlinear dynamic method. Advances in Engineering Research. 2016. Vol. 104, pp. 160–164. DOI: 10.2991/icmcm-16.2016.33
11. Reshetov A.A., Lokhova E.M. Assessment of the influence of the rotational components of seismic action on the SSS of a multistorey reinforced concrete building. International Journal for Computational Civil and Structural Engineering. March 2022. No. 18 (1), pp. 82–91. DOI: 10.22337/2587-9618-2022-18-1-82-91
12. Белостоцкий А.М., Акимов П.А., Павлов А.С. О численном моделировании физически нелинейной динамической реакции зданий и сооружений при сейсмических воздействиях, заданных акселерограммами. Сборник научных трудов ­РААСН. Москва. 2020. С. 105–112.
12. Belostotsky A.M., Akimov P.A., Pavlov A.S. On numerical modeling of the physically nonlinear dynamic response of buildings and structures under seismic impacts specified by accelerograms. Collection of scientific works of RAASN. Moscow. 2020, pp. 105–112.
13. Mkrtychev O.V., Lokhova E.M. Accumulation of damage in reinforced concrete elements under cyclic loads. IOP Conferece Series: Materials Science Engineering. Moscow. 2021. Vol. 1015, pp. 012038. DOI: 10.1088/1757-899X/1015/1/012038
14. Курбацкий Е.Н., Мондрус В.Л., Пестрякова Е.А. К вопросу о корректном задании исходной сейсмической информации // ACADEMIA. Архитектура и строительство. 2021. № 1. С. 134–143.
14. Kurbatsky E.N., Mondrus V.L., Pestryakova E.A. On the issue of correct assignment of initial seismic information. ACADEMIA. Arhitektura i stroitel’stvo. 2021. No. 1, pp. 134–143. (In Russian).
15. Дорожинский В.Б. Нелинейные методы расчетов при проведении научно-технического сопровождения // Промышленное и гражданское строительство. 2022. № 10. С. 32–36. DOI: 10.33622/0869-7019.2022.10.32-36
15. Dorozhinsky V.B. Nonlinear calculation methods for scientific and technical support. Promyshlennoe i grazhdanskoe stroitel’stvo. 2022. No. 10, pp. 32–36. (In Russian). DOI: 10.33622/0869-7019.2022.10.32-36
16. Мкртычев О.В., Решетов А.А. Представительный набор акселерограмм для расчета на сейсмические воздействия // Промышленное и гражданское строительство. 2023. № 9. С. 43–50. DOI: 10.33622/0869-7019.2023.09.43-50
16. Mkrtychev O.V., Reshetov A.A. Representative set of accelerograms for calculation of seismic influences. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 9, pp. 43–50. (In Russian). DOI: 10.33622/0869-7019.2023.09.43-50

For citation: Mkrtychev O.V., Lokhova E.M. Design of earthquake-resistant buildings. New generation standards. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 42–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-42-46

Transformable Fire Barriers for Filling Openings (Overview)

Number of journal: 4-2024
Autors:

Gravit M.V.,
Shabunina D.E.,
Kotlyarskaya I.L.
Nedryshkin O.V.,
Cherkashin A.V.

DOI: https://doi.org/10.31659/0044-4472-2024-4-31-41
УДК: 699.814

 

AbstractAbout AuthorsReferences
The review of scientific and technical literature on the problem of ensuring fire safety of public and industrial buildings by dividing rooms into fire compartments using transformable fire barriers (TFB), as well as by protecting openings with transformable fire fillings is presented. The general classification of TFB is presented, the requirements for TFB are described, the use cases of various types of TFB and their design features are considered. Engineering solutions for transformable fire shelters, as well as mobile fire barriers, are presented. It has been established that the fire resistance limit of TFB is higher when used in combination with water irrigation, but the disadvantage of the system is the high consumption of coolant (from 0.12 liters/s of water per 1 linear meter of opening width), which, in addition to material costs, also has a destructive effect on finishing materials and building structures. A possible way to solve these problems is to use various fillers in the working cloth that emit inert or extinguishing gases, but this method needs additional verification in the form of modeling and physical experiments.
M.V. GRAVIT, Candidate of Sciences (Engineering), Associate Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
D.E. SHABUNINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.L. KOTLYARSKAYA, Junior Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
O.V. NEDRYSHKIN, Applicant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. CHERKASHIN, Leading engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Peter the Great St. Petersburg Polytechnic University (29, Polytechnicheskaya Street, inner city territory Akademicheskoe municipal district, St. Petersburg, 195251, Russian Federation)

1. Yuen A.C.Y., Chen T.B.Y., Yang W., Wang C., Li A., Yeoh G.H., Chan Q.N., Chan M.C. Natural ventilated smoke control simulation case study using different settings of smoke vents and curtains in a large atrium. Fire. 2019. Vol. 2. DOI: 10.3390/FIRE2010007
2. Chiu S.-H., Wu C., Chen C.-Y., Lin T.-H., Lee S.-K. Improvement of fire safety performance for nursing homes by using fireproof curtains with a water film system. Buildings. 2022. Vol. 12. 1590. DOI: 10.3390/BUILDINGS12101590
3. Liu Q., Xiao J., Cai B., Guo X., Wang H., Chen J., Zhang M., Qiu H., Zheng C., Zhou Y. Numerical simulation on the effect of fire shutter descending height on smoke extraction efficiency in a large atrium. Fire. 2022. Vol. 5. 101. DOI: 10.3390/FIRE5040101
4. Рева Ю.В., Герасимова Т.Н. Современные системы пожарной безопасности торгово-развлекательных центров // XXI век. Техносферная безопасность. 2021. Вып. 6. № 3 (23). С. 303–308. DOI: 10.21285/2500-1582-2021-3-303-308
4. Reva Yu.V., Gerasimova T.N. Modern fire safety systems in shopping and entertainment centers. XXI vek. Tekhnosfernaya bezopasnost’. 2021. Iss. 6, No. 3 (23), pp. 303–308. (In Russian). DOI: 10.21285/2500-1582-2021-3-303-308.
5. Брушлинский Н.Н., Соколов С.В. О статистике пожаров и о пожарных рисках // Пожаровзрывобезопасность. 2011. № 20 (4). С. 40–48.
5. Brushlinsky N.N., Sokolov S.V. On fire statistics and fire risks. Pozharovzryvobezopasnost’. 2011. No. 20 (4), pp. 40–48. (In Russian).
6. Alvarez A., Meacham B.J., Dembsey N.A., Thomas J.R. Twenty years of performance-based fire protection design: challenges faced and a look ahead. Journal of Fire Protection Engineering. 2013. No. 23, pp. 249–276. DOI: 10.1177/1042391513484911/ASSET/IMAGES/LARGE/10.1177_1042391513484911-FIG1.JPEG
7. Wong L.T. Evaluation of safe distance of fire shutters in shopping malls. Architectural Science Review. Vol. 46 (4), pp. 403–409. DOI: 10.1080/00038628.2003.9697012
8. Gravit M.V., Nedryshkin O.V., Ogidan O.T. Transformable fire barriers in buildings and structures. Magazine of Civil Engineering. 2018. No. 77, pp. 38–46. DOI: 10.18720/MCE.77.4
9. Пресс А.А. Общедоступное руководство для борьбы с огнем. СПб.: Типография В.С. Балашева, 1893. 182 с.
9. Press A.A. Obshchedostupnoye rukovodstvo dlya bor’by s ognem [Publicly available guide to firefighting]. St. Petersburg: Printing house V.S. Balasheva. 1893. 182 p.
10. Patent US 1369518A. Fire-Door. Bumbarger C R. Declared 02.09.1919. Published 22.02.1921
11. Заикин С.В., Страхов В.Л. Трансформируемые огнезащитные ограждающие конструкции повышенной огнестойкости // Вестник МГСУ. 2009. № 4. С. 107–101.
11. Zaikin S.V., Strakhov V.L. Transformable fireproof enclosing structures with increased fire resistance. Vestnik of MGSU. 2009. No. 4, pp. 107–101. (In Russian).
12. Корольченко А.Я., Гетало Д.П. Противопожарные шторы (Обзор) // Пожаровзрывобезопасность. 2015. № 24. С. 56–65.
12. Korolchenko A.Ya., Getalo D.P. Fire curtains (Review). Pozharovzryvobezopasnost’. 2015. No. 24, pp. 56–65. (In Russian).
13. Nedryshkin O., Gravit M., Lyapin A., Voronin V. Overview of fire curtains in construction. MATEC Web of Conferences. 2016. No. 86. 4052. DOI: 10.1051/matecconf/20168604052
14. Соколов В.П. Настоящее и будущее гибких механических трансформируемых дымоогнезащитных преград в автоматизированной системе управления активной противопожарной защиты // Грани безопасности. 2004. № 11. С. 36–39.
14. Sokolov V.P. The present and future of flexible mechanical transformable smoke and fire barriers in an automated control system for active fire protection. Grani bezopasnosti. 2004. No. 11, pp. 36–39. (In Russian).
15. Beckett A., Ross R. PyroShield – A HVAC fire curtain testing robot. Automation in Construction. 2017. No. 81, pp. 234–239. DOI: 10.1016/J.AUTCON.2017.06.009.
16. Ляпин А.В. Современные огне- и дымозащитные преграды // Пожаровзрывобезопасность. 2008. Вып. 17 (6). С. 49–56.
17. Lyapin A.V. Modern fire and smoke barriers. Pozharovzryvobezopasnost’. 2008. Iss. 17 (6), pp. 49–56. (In Russian).
17. Lu K., Xu H., Shi C., Wang Z., Wang J., Ding Y. Numerical investigation of air curtain jet effect on the upper layer temperature evolution of a compartment fire and its transition. Applied Thermal Engineering. 2021. Vol. 197. DOI: 10.1016/j.applthermaleng.2021.117409
18. Chung D.H., Wang T.C., Tsai M.J., Lin T.H., Lee S.K. To enhance the fire resistance performance of high-speed steel roller door with water film system. Advances in Materials Science and Engineering. 2015. Vol. 2015. DOI: 10.1155/2015/436406
19. Akshata Chaithra C., Anusha Narayan, Niveditha P., Rashmi H.C. Prevention of railway accidents by automatic gate control and fire detection using IoT. International Journal of Engineering Research and Technology (IJERT). 2020. Vol. 8. Iss. 13. DOI: 10.17577/IJERTCONV8IS13001
20. Патент RU2229910C1. Способ ослабления воздействия потока энергии в виде света, тепла и конвективных газовых потоков, огнестойкий экран и огнезащитное укрытие на его основе / Страхов В.Л., Крутов А.М., Заикин С.В., Суханов А.В., Болодьян И.А., Карпов В.Л., Швырков С.А., Рубцов В.В. Заявл. 30.01.2003. Опубл. 10.06.2004.
20. Patent RU2229910C1. Sposob oslableniya vozdeystviya potoka energii v vide sveta, tepla i konvektivnykh gazovykh potokov, ognestoykiy ekran i ognezashchitnoye ukrytiye na yego osnove [A method for reducing the impact of energy flow in the form of light, heat and convective gas flows, a fire-resistant screen and a fire-resistant shelter based on it]. Strakhov V.L., Krutov A.M., Zaikin S.V., Sukhanov A.V., Bolodyan I.A., Karpov V.L., Shvyrkov S.A., Rubtsov V.V. Declared 30.01.2003. Published 10.06.2004.
21. Патент RU156814U1. Мобильная противопожарная преграда / Усанович С.А., Панова Т.В., Панов М.В., Шкрабак В.С., Шкрабак Р.В., Шкрабак В.В. Заявл. 10.06.2015. Опубл. 20.11.2015.
21. Patent RU156814U1. Mobil’naya protivopozharnaya pregrada [Mobile fire barrier] Usanovich S.A., Panova T.V., Panov M.V., Shkrabak V.S., Shkrabak R.V., Shkrabak V.V. Declared 10.06.2015. Published 20.11.2015.
22. Шкрабак В.С., Панова Т.В., Усанович С.А. Обеспечение пожарной безопасности АЗС посредством применения мобильной противопожарной преграды // Аграрный научный журнал. 2015. № 11. С. 55–57.
22. Shkrabak V.S., Panova T.V., Usanovich S.A. Ensuring fire safety of gas stations through the use of a mobile fire barrier. Agrarnyy nauchnyy zhurnal. 2015. No. 11, pp. 55–57. (In Russian).
23. Pereira D.J.S., Viegas C., Panão M.R.O. Heat transfer model of fire protection fiberglass thermal barrier coated with thin aluminium layer. International Journal of Heat and Mass Transfer. 2022. No. 184 (60). 122301. DOI: 10.1016/j.ijheatmasstransfer.2021.122301
24. Koshlak, H., Pavlenko, A.Design of the thermal insulation porous materials based on technogenic mineral fillers. Eastern-European Journal of Enterprise Technologies. 2017. No. 15 (89), pp. 58–63. DOI: 10.15587/1729-4061.2017.111996
25. Gravit M., Klementev B., Shabunina D. Fire resistance of steel structures with epoxy fire protection under cryogenic exposure. Buildings. 2021. Vol. 11. 537. DOI: 10.3390/buildings11110537
26. Минкин Д.А., Загайнов К.В. Материалы и методы повышения огнестойкости огнезащитных противопожарных штор // Природные и техногенные риски (физико-математические и прикладные аспекты). 2020. № 1. С. 57–65.
26. Minkin D.A., Zagaynov K.V. Materials and methods for improving of fire-protective curains fire ressistance. Prirodnye i tekhnogennye riski (fiziko-matematicheskie i prikladnye aspekty). 2020. No. 1, pp. 57–65. (In Russian).
27. Nikitina M., Ustinov A., Kiseleva V., Babikov I. New fire retardant compositions for fire-resistant automatic curtains. MATEC Web of Conferences. 2018. 245. DOI: 10.1051/matecconf/201824511004
28. Gravit M., Shabunina D., Nedryshkin O. The fire resistance of transformable barriers: influence of the large-scale factor. Fire. 2023. Vol. 6. 294. DOI: 10.3390/FIRE6080294
29. Patent CN 216135624 U. Fire-resistant flame-retardant curtain fabric / Wu Dongmei. Declared 23.08.2021. Published 29.03.2022
30. Patent EP 3912690 B1 Multi layer fire curtain / Lambridis Andrew C., Gomaa Ashraf, Escobar Oscar A. Declared 18.05.2021. Published 25.10.2023.
31. Nascimento L., Silva A., Carvalho J., Vilarinho C. Life cycle assessment of the production of a fire curtain. In book: WASTES: Solutions, Treatments and Opportunities IV, pp. 446–451. DOI: 10.1201/9781003345084-72
32. Патент RU2725720C1. Огнестойкое многослойное изделие для огнезащиты строительных конструкций / Прусаков В.А., Гравит М.В., Антонов С.П. Заявл. 06.03.2020. Опубл. 03.07.2020.
32. Patent RU2725720C1. Ognestoykoye mnogosloynoye izdeliye dlya ognezashchity stroitel’nykh konstruktsiy [Fire-resistant multilayer product for fire protection of building structures] / Prusakov V.A., Gravit M.V., Antonov S.P. Declared 06.03.2020. Published 03.07.2020. (In Russian).
33. Патент RU2651920C2. Огнезащитная манжета / Кляйн М. Заявл. 08.10.2013. Опубл. 24.04.2018.
33. Patent RU2651920C2. Ognezashitnaya mangeta [Fireproof cuff] / Klein M. Declared 08.10.2013. Published 24.04.2018. (In Russian).
34. Сабирзянова Р.Н., Красина И.В. Современные тенденции в производстве огнестойких текстильных материалов // Вестник Казанского технологического университета. 2013. № 16. С. 75–79.
34. Sabirzyanova R.N., Krasina I.V. Modern trends in the production of fire-resistant textile materials. Vestnik of the Kazan Technological University. 2013. No. 16, pp. 75–79. (In Russian).
35. Kim J.-Y., Lee S.-G. Study on design of pressure chamber in a linear-jet type air curtain system for prevention of smoke spread. Open Journal of Fluid Dynamics. 2017. No. 7, pp. 501–510. DOI: 10.4236/ojfd.2017.74034
36. Patent EP 3840844 B1 Fire or Smoke Curtain / Reed James. Declared 24.08.2018. Published 05.10.2022.
37. Chiu S.-H., Wu C., Chen C.-Y., Lin T.-H., Lee S.-K. Improvement of fire safety performance for nursing homes by using fireproof curtains with a water film system. Buildings. 2022. Vol. 12. 1590. DOI: 10.3390/buildings12101590
38. Lee S.K., Ho M.C., Chen J.J., Lin C.Y., Lin T.H. Fire resistance evaluation of a steel roller shutter with water-film cooling system. Applied Thermal Engineering. 2013. No. 58, pp. 465–478. DOI: 10.1016/J.APPLTHERMALENG.2013.04.027

For citation: Gravit M.V., Shabunina D.E., Kotlyarskaya I.L. Nedryshkin O.V., Cherkashin A.V. Transformable fire barriers for filling openings (overview). Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 31–41. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-31-41

Numerical Simulation of Compensation Injection Problems Near Deep Excavations

Number of journal: 4-2024
Autors:

Ter-Martirosyan A.Z.,
Kivlyuk V.P.,
Isaev I.O.

DOI: https://doi.org/10.31659/0044-4472-2024-4-23-30
УДК: 624.15

 

AbstractAbout AuthorsReferences
The stress-strain state (SSS) of the “ground foundation – foundation pit under the protection of a fence – compensation injection zone” system is complex, multifactorial and transforming in space. Taking into account a wide range of phenomena when changing the SSS of the soil base is associated with significant difficulties, especially without the use of numerical modeling using software and computer systems. Numerical modeling in the implementation of the finite element method (FEM) for the problems of complex interaction of a soil basis with underground structures during compensatory grouting makes it possible to assign injection zones in any position in space (horizontally, vertically, at an angle), determine the necessary injection parameters to achieve the building lifting of the soil basis when solving the inverse problem. In this study, using examples of numerical modeling of compensation grouting problems near the pit fence with different locations of existing buildings, the authors identified the determining factors affecting the distribution of internal forces in the enclosing structures of the excavation, as well as on the existing structures of the underground structure. The results of comparison of calculations in two-dimensional and three-dimensional formulations are presented, an increase in the bending moment of the retaining wall when carrying out work on compensatory injection by 187–279% is shown for different parameters of the distance to the grouting horizon. The results of the conducted studies confirm the need to take into account the increase in internal efforts during the work on compensatory injection in the structures of the pit fences when assigning reinforcement. In addition, in some cases it is necessary to provide additional protective measures to prevent a negative impact on the constructed underground structures to reduce emergency situations.
A.Z. TER-MARTIROSYAN1, Doctor of Sciences (Engineering), Vice-Rector (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.P. KIVLYUK2, Executive Director – Head of the Direction (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.O. ISAEV2, Head of the Impact Assessment and Emergency Response Department (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 JSC «Mosinzhproekt» (8, 10, Khodynsky Boulevard, Moscow, 125252, Russian Federation)

1. Мангушев Р.А., Денисова О.О. Влияние технологического воздействия изготовления горизонтальной диафрагмы методом jet-grouting на ограждение котлована типа «стена в грунте» // Жилищное строительство. 2022. № 9. С. 25–31. DOI: https://doi.org/10.31659/0044-4472-2022-9-25-31
1. Mangushev R.A., Denisova O.O. The effect of the technological impact of the manufacture of a horizontal diaphragm by jet-grouting on the fencing of a pit of the slurry wall. Zhilishchnoye Stroitelstvo [Housing Construction]. 2022. No. 9, pp. 25–31. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-25-31
2. Wu, Ke & Cui, Shuaishuai & Liu, Yuping & Zhang, Qianjin & Zhao, Jiahui & Zhang, Zheng & Han, Yucong. Study on the mechanism of grouting under different tunnel depth of cross passage. Geotechnical and Geological Engineering. 2020. 38. 10.1007/s10706-020-01185-w
3. Gafar K. International society for soil mechanics and geotechnical engineering fracturing of sand in compensation grouting. International society for soil mechanics and geotechnical engineering. 2009. P. 281–286.
4. Bestuzheva A.S., Chubatov I.V. Numerical modeling of the controlled lifting of the structure. IOP Conference Series: Materials Science and Engineering. 2020. No. 7 (869). 072018. DOI: 10.1088/1757-899X/869/7/072018
5. Bestuzheva A.S., Chubatov I.V. Numerical simulation of stress and strain behavior of foundation soil under compensation grouting. E3S Web Conf. 2021. P. 264, 03020. https://doi.org/10.1051/e3sconf/202126403020
6. Bestuzheva A.S., Chubatov I.V. Test problems in mathematical simulation of lifting and leveling a foundation on a sandy base. Power Technology and Engineering. 2021. No. 2 (55), pp. 226–232. DOI: 10.1007/s10749-021-01345-9
7. Рассказов Л.Н., Чубатов И.В., Буренков П.В. Напряженно-деформированное состояние сооружения при подъеме и выравнивании в результате неравномерной осадки // Промышленное и гражданское строительство. 2019. № 5. C. 60–64.
7. Rasskazov L.N., Chubatov I.V., Burenkov P.V. The stress-strain state of the structure during lifting and leveling as a result of uneven precipitation. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 5, pp. 60–64. (In Russian).
8. Рассказов Л.Н., Чубатов И.В., Радзинский А.В. Создание инъекционного массива в песчаном основании зданий // Промышленное и гражданское строительство. 2017. № 6. C. 56–63.
8. Rasskazov L.N., Chubatov I.V., Radzinsky A.V. Creation of an injection array in the sandy base of buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 6, pp. 56–63. (In Russian).
9. Тер-Мартиросян З.Г., Сидоров В.В., Олодо Т.Д. Напряженно-деформированное состояние дамбы и ее основания с учетом их взаимодействия // Инженерная геология. 2011. № 2. C. 30–34.
9. Ter-Martirosyan Z.G., Sidorov V.V., Olodo T.D. The stress-strain state of the dam and its base taking into account their interaction. Inzhenernaya geologiya. 2011. No. 2, pp. 30–34. (In Russian).
10. Бестужева А.С., Чубатов И.В. Тестовые задачи при математическом моделировании подъема и выравнивания фундамента на песчаном основании // Гидротехническое строительство. 2021. № 2. C. 56–64.
10. Bestuzheva A.S., Chubatov I.V. Test problems in mathematical modeling of lifting and leveling of the foundation on a sandy foundation. Gidrotekhnicheskoe stroitel’stvo. 2021. No. 2, pp. 56–64. (In Russian).
11. Зерцалов М.Г., Симутин А.Н., Александров А.В. Применение технологии компенсационного нагнетания при ликвидации дополнительных деформаций основания гидротехнических сооружений на примере гидроузла Неккар // Гидротехническое строительство. 2017. № 4. C. 47–51.
11. Zertsalov M.G., Simutin A.N., Alexandrov A.V. Application of compensatory injection technology in the elimination of additional deformations of the base of hydraulic structures on the example of the Neckar hydraulic unit. Gidrotekhnicheskoe stroitel’stvo. 2017. No. 4, pp. 47–51. (In Russian).
12. Беллендир Е.Н. Защита и выравнивание зданий и сооружений с помощью технологии компенсационного нагнетания // Гидротехническое строительство. 2016. № 2. C. 15–19.
12. Bellendir E.N. Protection and alignment of buildings and structures using compensatory injection technology. Gidrotekhnicheskoe stroitel’stvo. 2016. No. 2, pp. 15–19. (In Russian).
13. Александров А.В. Опытное обоснование выравнивания здания Загорской ГАЭС-2 // Гидротехническое строительство. 2018. № 8. C. 7–16.
13. Alexandrov A.V. Experimental justification of the alignment of the Zagorskaya GAES-2 building. Gidrotekhnicheskoe stroitel’stvo. 2018. No. 8, pp. 7–16. (In Russian).
14. Zertsalov M. G., Simutin A. N., Aleksandrov A. V. Calculated substantiation of controlled compensation grouting for lifting the foundation slab of Zagorsk PSP-2. Power Technology and Engineering. 2019. No. 5 (52), pp. 512–516.

For citation: Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O. Numerical simulation of compensation injection problems near deep excavations. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 23–30. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-23-30

Physical and Mechanical Properties of Butt Welded Joints of Aluminum Alloys

Number of journal: 4-2024
Autors:

Shuvalov A.N.,
Kornev O.A.,
Ermakov V.A.

DOI: https://doi.org/10.31659/0044-4472-2024-4-13-22
УДК: 678.029.43

 

AbstractAbout AuthorsReferences
Along with the improvement of joining technologies with argon arc, plasma and laser welding for aluminum alloy elements, high efficiency of joints made with the use of friction stir welding (FSW), which has low energy consumption and is almost equally strong as base metal, has been achieved. However, the processes of friction stir welding have not been sufficiently studied and can lead to softening of aluminum alloy welds up to 0.65 of base metal strength. When studying the effect of friction stir welding and mechanized electric arc welding in argon medium, welded joints of aluminum alloys of Al-Si-Mg (AD35T1, 6082-T6) and Al-Zn-Mg alloying systems (1915T) were subjected to tensile and impact tests. The values of strength, elastic and plastic characteristics of argon arc welded specimens of 1915T, AD35T1 and 6082-T6 alloys were obtained. For alloy 6082-T6, the same characteristics are presented for FSW welded specimens. Decrease in strength and ductility in the zones of welded joints for both welding methods is observed. At the same time, the highest relative values of strength and offset yield strength of the welded joint are fixed for friction stir welding. Slight decrease in modulus of elasticity obtained for argon-arc welded specimens was recorded. The impact strength is constant for each welded joint zones in the temperature range of +20 – -60оC and increased in weld metal of FSW butt joints of alloy 6082-T6.
A.N. SHUVALOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
O.A. KORNEV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. ERMAKOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Vedyakov I.I., Odesskii P.D., Gukova M.I. Aluminum alloys for building metal structures (comment to SP 128.13330). Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 10, pp. 5–9. (In Russian).
2. Belov N.A., Naumova E.A., Akopyan T.K. Evtekticheskie splavy na osnove alyuminiya: novye sistemy legirovaniya [Eutectic aluminum-based alloys: new alloying systems]. Moscow: Ruda i metally. 2016. 256 p.
3. Drits A.M., Ovchinnikov V.V. Svarka alyuminievykh splavov [Welding f aluminum alloys]. Moscow: Ruda i metally, 2020. 476 p.
4. Kablov E.N. Strategic directions for the development of materials and technologies for their processing for the period up to 2030. Aviatsionnye materialy i tekhnologii. 2012. No. 8, pp. 7–17. (In Russian).
5. International Patent Application No. PCT/GB92/02203, GB Patent Application No. 9125978.8. Thomas W.M., Nicholas E.D., Needham J.C. et al. 1991.
6. Kuritsyn D.N., Shakhrivar S.M., Moeni Tabatabai D.S. Technological expertise of the industrial feasibility of using friction welding with mixing in special tasks of aerospace production. Cosmonautics: science and education. Collection of materials of the All-Russian Scientific Conference. 2019, pp. 83–90. (In Russian).
7. Ishchenko A.Ya., Pod”el’nikov S.V., Poklyatskii A.G. Friction welding with mixing of aluminum alloys (overview). Avtomaticheskaya svarka. 2007. No. 11, pp. 32–38 (In Russian).
8. Mironenko V.N., Barabokhin N.S. Structure, properties and mechanism of joining aluminum alloys in rotary friction welding. Deformatsiya i razrushenie materialov. 2008. No. 5, pp. 37–41. (In Russian).
9. Scialpi A., De Filippis L., Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy. Materials & Design. 2007. No. 28. 1124. https://doi.org/10.1016/j.matdes.2006.01.031
10. Mroczka K., Pietras A. FSW characterization of 6082 aluminum alloy sheets. Archives of Materials Science and Engineering. 2008. No. 40, p. 104
11. Enab A. El-Danaf, Magdy M. El-Rayes. Microstructure and mechanical property of friction stir welded 6082 AA in as welded and post weld heat treated conditions. Materials and Desing. 2013. Vol. 46, pp. 561–572.
12. Naumov A., Rylkov E., Isupov F., Rudskoy A. et al. Metallurgical and mechanical characterization high-speed friction stir welded AA6082 T6 aluminum alloy. Materials. 2019. Vol. 12. No. 24. 4211. https://doi.org/10.3390/ma12244211
13. Kondrat’ev S.Y., Morozova Y.N., Golubev Y.A. et al. Microstructure and mechanical properties of welds of Al-Mg-Si alloys after different modes of impulse friction stir welding. Metal Science and Heat Treatment. 2018. Vol. 59. No. 11–12, pp. 697–702. DOI: 10.1007/s11041-018-0213-6
14. Ovchinnikov V.V., Drits A.M. Technological features of friction welding with mixing of aluminum alloy joints of the Al-Mg system. Naukoemkie tekhnologii v mashinostroenii. 2019. No. 3 (93), pp. 4–11. (In Russian).
15. Murav’ev V.I., Bakhmatov P.V., Melkostupov K.A. To the question of the relevance of the study of friction welding with mixing of structures made of high-strength aluminum alloys. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta. 2010. Vol. 1. No. 2, pp. 110–125. (In Russian).
16. Yang C., Ni D.R., Xue P. Et al. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates. Materials Characterization. 2018. Vol. 145, pp. 20–28. https://doi.org/10.1016/j.matchar.2018.08.027
17. Rebrin M.M. Features and technological capabilities of friction mixing welding in industry. Sotsial’no-ekonomicheskie i tekhnicheskie sistemy: issledovanie, proektirovanie, optimizatsiya. 2020. No. 1, pp. 76–84. (In Russian).
18. Bakshaev V.A., Vasil’ev P.A. Friction welding with mixing in the production of large-sized aluminum alloy products. Tsvetnye metally. 2014. No. 1, pp. 75–80. (In Russian).
19. Ivanov S.Yu., Panchenko O.V., Ginzburg S.A., Mikhailov V.G. Analysis of local mechanical properties of Al-Mg-Si welded joints during friction welding with mixing. Svarochnoe proizvodstvo. 2018. No. 6, pp. 27–31. (In Russian).
20. Ovchinnikov V.V., Antonov A.A. Features of weldability of aluminum alloy 1913 under melting and friction welding conditions with mixing. Zagotovitel’nye proizvodstva v mashinostroenii. 2018. Vol. 16. No. 1, pp. 13–20. (In Russian).
21. Ovchinnikov V.V., Sbitnev A.G., Polyakov D.A. Effect of fusion welding on the properties of 1915T aluminum alloy joints. Russian Metallurgy (Metally). 2023, pp. 736–742. https://doi.org/10.1134/S0036029523060344
22. Alifirenko E.A., Shishenin E.A. Prospects for reducing the weight of hull and superstructure structures using welded large-sized lightweight panels obtained by friction welding with mixing. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra. 2019. No. 81, pp. 49–52. (In Russian).
23. Lyudmirskii Yu.G., Kotlyshev R.R. Friction welding with mixing in construction. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Stroitel’stvo i arkhitektura. 2010. No. 3, pp. 15–22. (In Russian).
24. Ovchinnikov V.V. Prospects for the development of high-tech deformable alloys for welded structures. Part 1. Mashinostroenie i inzhenernoe obrazovanie. 2017. No. 2, pp. 24–38. (In Russian).
25. Ovchinnikov V.V. Prospects for the development of high-tech deformable alloys for welded structures. Part 2. Mashinostroenie i inzhenernoe obrazovanie. 2017. No. 3, pp. 22–39. (In Russian).
26. Ovchinnikov V.V. Prospects for the development of high-tech deformable alloys for welded structures. Part 3. Mashinostroenie i inzhenernoe obrazovanie. 2017. No. 4, pp. 44–60. (In Russian).
27. Hori H., Komoto T. Friction welding with mixing sheet aluminum. Welding Technology. 2010. Vol. 58. No. 6, pp. 48–53. DOI: 10.1080/09507116.2022.2049126
28. Wang C., Cui H., Tang X. et al. Friction-stir welding of a wrought Al-Si-Mg alloy in as-fabricated and heat-treatment states. Materials. 2020. Vol. 13. No. 4, p. 861.
29. Yang C., Zhang J.F., Ma G.N. et al. Microstructure and mechanical properties of double-side friction stir welded 6082 AL ultra-thick plates. Journal of Materials Science and Technology. 2020. Vol. 41, pp. 105–116. https://doi.org/10.1016/j.jmst.2019.10.005
30. Il’yushchenko A.F., Radchenko A.A., Shevtsov A.I., Buben D.V. Investigation of the influence of STP process parameters on the quality and properties of overlapping welded joints made of thin aluminum (AW 6062-T6) profiles of different thicknesses. Poroshkovaya metallurgiya. Respublikanskii mezhvedomstvennyi sbornik nauchnykh trudov. Minsk. 2019, pp. 197–202. (In Russian).
31. Alferova E.A., Lychagin D.V. The relationship between the Hurst index and the effectiveness of self-organization of a deformable system. Zhurnal tekhnicheskoi fiziki. 2018. Vol. 88. No. 4, pp. 555–560. (In Russian).

For citation: Shuvalov A.N., Kornev O.A., Ermakov V.A. Study of physical and mechanical properties of welded joints of aluminum alloys. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 13–22. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-13-22

Analytical Confirmation of the Calculated Dependencies for Heat Exchange in a Plate Recuperator when Humidifying the Auxiliary Flow

Number of journal: 4-2024
Autors:

Samarin O.D.,
Kirushok D.A.

DOI: https://doi.org/10.31659/0044-4472-2024-4-9-12
УДК: 697.921.252:628.8

 

AbstractAbout AuthorsReferences
The relevance of the study is related to the need to ensure maximum reduction of energy consumption while ensuring the calculated parameters of the indoor climate in buildings under the Law of the Russian Federation “On Energy Saving...” and the updated version of SP 131. The purpose of the study is to obtain an approximate analytical expression of this dependence, which makes it possible to additionally confirm the results of field and numerical experiments previously performed by the authors for this flow treatment scheme. The objective of the study is to build a simplified mathematical model of the processes of changing the heat and humidity state of the air in the recuperator, identify the main factors affecting the increasing multiplier to the coefficient of temperature efficiency of the device and obtain the necessary numerical coefficients in formulas linking the desired and initial parameters. The general equation of thermal balance and heat transfer for the heat exchanger as a whole is used, including the integral characteristics of the apparatus in a dimensionless form, as well as standard techniques of algebraic transformations. An approximate analytical expression is obtained for an increasing multiplier to the coefficient of thermal efficiency of the recuperator taking into account the additional cooling of the inflow due to the heat consumption for evaporation. It is shown that the general structure of this ratio coincides with the one found by the authors earlier by processing the results of numerical modeling of a two-dimensional temperature field in a heat exchanger, taking into account experimental data on the amount of moisture carried away, which confirms their correctness and reliability.
O.D. SAMARIN1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. KIRUSHOK2, Expert

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Federal Center for Regulation, Standardization and Technical Assessment of Compliance in Construction (FAU “FTSS”) (6, Furkasovsky lane, Moscow, 101000, Russian Federation)

1. Samarin O.D., Lushin K.I., Kirushok D.A. The energy saving scheme of air treatment with indirect evaporative cooling in plate heat recovery units. Zhilishchnoye stroitel’stvo [Housing Construction]. 2018. No. 1–2, pp. 43–45. (In Russian).
2. Samarin O.D., Kirushok D.A. Experimental determination of the quantity of entrained moisture from the humidifier cell, changing the direction of air flow. SOK. 2020. No. 4, pp. 46–48. (In Russian).
3. Broyda V.A. Calculation of operating parameters for fancoil heat exchanger considering steady indoor conditions for the air. Izvestiya of higher educational institutions. Construction. 2013. No. 8, pp. 72–77. (In Russian).
4. Yemelyanov A.L., Kozhevnikova E.V. Procedure of heat transfer calculation under air motion in surface air coolers. Vestnik of the International Academy of Refrigeration. 2014. No. 1, pp. 39–42. (In Russian).
5. Akhmadiev F.G., Farakhov M.I., Gilfanov R.M., Akhmitshin A.A. Physical simulation and analysis techiques of plate heat exchangers at film-type condensation. Vestnik of the Technological University. 2019. Vol. 22. No. 10, pp. 16–24. (In Russian).
6. Akhmadiev F.G., Gilfanov R.M., Farakhov M.I., Akhmitshin A.A. Mathematical and physical modeling of film condensation in plate heat exchangers. Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT. 2020. Vol. 5, pp. 25–30. (In Russian).
7. Stepanov K.I., Mukhin D.G. Efficiency of a lithium bromide absorption thermotransformer with two-stage absorption in the structure of gasified power plants. Thermal Engineering. 2021. Vol. 68. No. 1, pp. 37–44. DOI: 10.1134/S0040601520120095
8. Averkin A.G., Eremkin A.I., Averkin Yu.A. Innovative air drying technologies in climate technology dased on solid sorbents. Zhilishchnoye khozyaystvo i kommunal’naya infrastruktura. 2021. No. 1 (16), pp. 19–30. (In Russian).
9. Nguyen D.H., Ahn H.S. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger. International Journal of Heat and Mass Transfer. 2021. Vol. 178, pp. 121601. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121601
10. Gundermann M., Botsch T.W., Raab F., Raab D. Investigation of the heat transfer coefficient during the condensation of small quantities of water vapour from a mixture with a high proportion of non-condensable gas in a horizontal smooth tube. International Journal of Heat and Mass Transfer. 2021. Vol. 170. 121016. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121016
11. Samarin O.D., Kirushok D.A. Modeling of heat transfer in recuperative heat exchanger while humidifying the auxiliary air flow. Izvestiya of higher educational institutions. Construction. 2019. No. 2, pp. 72–77. (In Russian).

For citation: Samarin O.D., Kirushok D.A. Analytical confirmation of the calculated dependencies for heat exchange in a plate recuperator when humidifying the auxiliary flow. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 9–12. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-9-12

Analysis of Problems in the State of Heat Supply to Residential Buildings Using Heat Pump Circuits

Number of journal: 4-2024
Autors:

Fedosov S.V.,
Fedoseev V.N.,
Voronov V.A.

DOI: https://doi.org/10.31659/0044-4472-2024-4-3-8
УДК: 697.434

 

AbstractAbout AuthorsReferences
Currently, the energy-efficient use of heat exchangers such as heat pumps is difficult in most regions of the Russian Federation. Most of the modern heat supply problems of built-in heat pump systems can be solved by organizational and technical means. First of all, it is necessary to streamline and compare foreign and domestic experience in the processes of design, production and installation work in the construction industry. The regulatory documentation also needs to take into account the climatic specifics of the regions and, accordingly, the modern building materials used in Russia. All the indicated points will directly affect the composition of the project documentation and will affect such sections as PPR and PIC. The purpose of the article is to analyze the main problems that hinder the formation of efficient production of thermal energy by heat pumps. The article uses general theoretical methods of cognition (analysis, synthesis, analogy, generalization, comparison), etc. As a result of the study, the problems of using heat pump devices on the territory of the Russian Federation are identified and formulated. These include gaps in regulatory documentation, the lack of incentive government programs, the lack of service support from most device manufacturers and the lack of a real physical and mathematical model of the software of the internal circuit of a heat pump system, on the basis of which it would be possible to predict the performance of the device within the life cycle of a construction project. The main organizational and technological solutions for the effective use of heat pump devices within the life cycle of low-rise buildings and structures are formulated.
S.V. FEDOSOV1, Doctor of Sciences (Engineering), Academician of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.N. FEDOSEEV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.A. VORONOV2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 Ivanovo State Polytechnic University (153000, Ivanovo, Sheremetevsky prospect, 21, Russian Federation)

1. Savradym V.M., Shulekina E.N. Prospects for the development of low-rise construction as a priority direction in the housing construction industry. Innovatsii i investitsii. 2021. No. 6, pp. 208–213. (In Russian).
2. Sultanov A.A., Morozova N.I. Features of the development of the market for individual housing and low-rise construction and assessment of its influence on spatial development. Upravlencheskiy uchet. 2022. No. 3–3, pp. 609–617.
3. El Hafdaoui H., Khaldoun A., Khallaayoun A., Jamil A., Ouazzani K. Performance investigation of dual-source heat pumps in hot steppe climates. 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). Mohammedia, Morocco, 2023, pp. 1–8. DOI: 10.1109/IRASET57153.2023.10153029
4. Fedosov S.V., Fedoseev V.N., Zaitseva I.A. Recirculating air heat pump with recovery: application experience. AVOK: Ventilyatsiya, otopleniye, konditsionirovaniye vozdukha, teplosnabzheniye i stroitel’naya teplofizika. 2020. No. 8, pp. 54–57. (In Russian).
5. Shioya. Masaki, Shimo Taizo, Shiba Yoshiro, Masaki Ichiro, Ooka Ryozo and all. Development of sky-source heat pump system. The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023). Tokyo, Japan. E3S Web of Conferences. Vol. 396. DOI: 10.1051/e3sconf/202339603033
6. Tabunshchikov Yu.A. Fundamentals of the formation of an environmentally sustainable human environment. Energosberezheniye. 2023. No. 3, pp. 1–13. (In Russian).
7. Lapidus A.A. Organizational and technological platform of construction. Vestnik of the MSUCE. 2022. Vol. 17. No. 4, pp. 516–524. (In Russian).
8. Emmi Giuseppe, Cavazzuti Marco, Bottarelli Michele. A management strategy for multi-source heat pump systems. International Journal of Heat and Technology. 2022. Vol. 40, pp. 879–887. DOI: 10.18280/ijht.400403
9. Pasqui Mattia, Vaccaro Guglielmo, Lubello Pietro, Milazzo Adriano, Carcasci Carlo. Heat pumps and thermal energy storages centralised management in a Renewable Energy Community. International Journal of Sustainable Energy Planning and Management. 2023. Vol. 38, pp. 65–82. 10.54337/ijsepm.7625
10. Lee Sangwook, Chung Yoong, Lee Yoo, Jeong Yeonwoo, Kim Min. Battery thermal management strategy utilizing a secondary heat pump in electric vehicle under cold-start conditions. Energy. 2023. Vol. 269. 126827. 10.1016/j.energy.2023.126827
11. Torricelli Noemi, Pascale A., Dumont O, Lemort V. Optimal management of reversible heat pump/ORC carnot batteries. Journal of Engineering for Gas Turbines and Power. 2023. Vol. 145 (4). 041010 10.1115/GT2022-82509.
12. Lämmle M., Metz J., Kropp M., Wapler J., Oltersdorf T., Günther D., Herkel S., Bongs C. Heat pump systems in existing multifamily buildings: a meta-analysis of field measurement data focusing on the relationship of temperature and performance of heat pump systems. Energy Technology. 2023. Vol. 11. Iss. 12. https://doi.org/10.1002/ente.202300379
13. A program for modeling the analytical dependence of the functional parameters of the evaporation kinetics of working refrigerant droplets in the circuit of air heat-refrigeration systems. Fedosov S.V., Fedoseev V.N., Zaitsev I.S., Voronov V.A., Blinov O.V., Zaitseva I.A. Certificate of registration of a computer program No. 20226664150, 25.08.2022. Application No. 2022665233 dated 08.08.2022. (In Russian).
14. A program for calculating the dynamics of the temperature profile of a thermally insulated pipeline of the internal circuit of an evaporation-condensing unit of an air-heating and refrigeration unit. Fedosov S.V., Fedo-seev V.N., Zaitsev I.S., Voronov V.A., Blinov O.V., Zaitseva I.A. Certificate of registration of a computer program No. 2022682948. 29.11.2022. Application No. 2022 682116 dated 16.01.2022. (In Russian).
15. A program for calculating thermal conductivity and boundary temperatures of a plate, taking into account the process of moisture desublimation on the outer surface of the pipeline of a heat exchange device. Fedo-sov S.V., Fedoseev V.N., Zaitsev I.S., Voronov V.A., Blinov O.V., Zaitseva I.A. Certificate of registration of a computer program No. 2023663430. Application No. 2023662305 dated 05.06.2023. (In Russian).
16. A program for simulating the solution of the thermal conductivity problem of an unbounded plate. Fedosov S.V., Fedoseev V.N., Zaitsev I.S., Voronov V.A., Blinov O.V., Zaitseva I.A. Certificate of registration of a computer program No. 2023668149, 15.08.2023. Application No. 2023667097 dated 23.08.2023. (In Russian).

For citation: Fedosov S.V., Fedoseev V.N., Voronov V.A. Analysis of problems in the state of heat supply to residential buildings using heat pump circuits. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-3-8

Restoration of Brickwork at the Cultural Heritage Sites of Orenburg

Number of journal: 3-2024
Autors:

Odintsov A.R.,
Klimova Yu.V.

DOI: https://doi.org/10.31659/0044-4472-2024-3-66-70
УДК: 691.421.24

 

AbstractAbout AuthorsReferences
Orenburg as the administrative center of the Orenburg region of Russia and the Orenburg region was formed in 1743. One of the few cities in the Russian Federation that has a protected historical center, Orenburg is one of the first places where the eclectic architectural style was born, which carries a mixture of architectural styles. The paper presents an analysis of archival records of the history of the construction of the city of Orenburg, the features of the city’s layout, including cultural heritage sites built of ceramic bricks. The features of the first buildings made of ceramic bricks, which formed the architectural style of the city and influenced the construction of brick buildings in the region, their history of modification and the methods used to restore the historical appearance of facades, are considered. The analysis of modern methods of restoration of brickwork has been carried out. The features of the materials used at such objects of cultural heritage of regional significance, built of ceramic bricks, are considered.
A.R. ODINTSOV, Graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.V. KLIMOVA, Senior Lecturer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Orenburg State University (13, Avenue Pobedy, Orenburg, 460018, Russian Federation)

1. Set of restoration rules. “Recommendations for carrying out research, survey, design and production work aimed at preserving cultural heritage sites (historical and cultural monuments) of the peoples of the Russian Federation.” Moscow: Ministry of Culture of the Russian Federation. 2009, pp. 84–113. (In Russian).
2. Eremeeva S.A. Pamjati pamjatnikov: praktika monumental’noj kommemoracii v Rossii XIX – nachala XX vv. [In memory of monuments: the practice of monumental commemoration in Russia in the 19th – early 20th centuries]. Moscow: Russian State Humanitarian University, 2015. 530 p.
3. Collection of methodological recommendations for the restoration and reconstruction of cultural heritage objects [Electronic resource]: Methodological recommendations for the restoration and reconstruction of brickwork of cultural heritage objects. St. Petersburg: Azhio 2020, pp. 4–17. Date of Access: https://www.agiogk.ru/
4. Spiridonov D.V., Goryachev G.A. Restavracija i prisposoblenie obektov kul’turnogo nasledija: problemy nauchno-proektnoj dokumentacii [Restoration and adaptation of cultural heritage objects: problems of scientific and design documentation]. Moscow: Land law; Natural resource law; Environmental Law; Agrarian Law 2020, pp. 12–19.
5. Restavracija pamjatnikov istorii i iskusstva v Rossii v XIX–XX vekah. Istorija, problemy [Restoration of historical and artistic monuments in Russia in the 19th –20th centuries. History, problems]. 2nd ed. Moscow: Academic project. 2015. 604 p.
6. Klimenko S.V., Klimenko Yu.G. Voobrazhaemaja arhitektura. Istoricheskie nauchnye rekonstrukcii pamjatnikov russkoj arhitektury [Imaginary architecture. Historical scientific reconstructions of monuments of Russian architecture]. Moscow: Progress-Tradition. 2020. 544 p.
7. Staritsyna A.A., Martynenko E.A., Vakhrusheva S.V., Ptukhina I.S. Analysis of existing policies in the field of conservation and regeneration of cultural heritage sites [Electronic resource]. StudArctic forum. 2017. Iss. 1 (5). Date of Access: https://saf.petrsu.ru/journal/article.php?id=1102
8. Ohrana kul’turnogo nasledija v dokumentah XVII–XX vv. Hrestomatija [Protection of cultural heritage in documents of the 17th–20th centuries. Reader]. Vol. 1. Moscow: Publishing house “Ves Mir”. 2000. 528 p.
9. Burlutskaya E.V. Orenburg kupecheskij. Gorodskoj landshaft kak prostranstvo povsednevnosti [Orenburg merchant. Urban landscape as a space of everyday life]. Orenburg: Orenburg Book. 2018. 270 p.
10. Raisky P.D. Putevoditel’ po gor. Orenburgu s ocherkom ego proshlogo i nastojashhego, illjustracijami i planom [Mountain guide Orenburg with an outline of its past and present, illustrations and plan]. Orenburg: Provincial Printing House. 1915. 85 p.
11. Stolpyansky P.N. Gorod Orenburg. Materialy k istorii i topografii goroda [Orenburg. Materials on the history and topography of the city]. Orenburg: Provincial Printing House. 1908. 400 p.

For citation: Odintsov A.R., Klimova Yu.V. Restoration of brickwork at cultural heritage sites in Orenburg. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2024. No. 3, pp. 66–70. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-66-70

About Some Properties of Structural Steel Used in the Construction of a Railway Bridge Over the Amur River in the Early XX Century

Number of journal: 3-2024
Autors:

Komarov O.N.,
Volkov A.F.

DOI: https://doi.org/10.31659/0044-4472-2024-3-57-65
УДК: 624.6.014.2

 

AbstractAbout AuthorsReferences
The main stages of construction in 1913–1916 of the railroad bridge across the Amur River near Khabarovsk are presented. The peculiarities of the construction of the structure in the difficult foreign policy conditions of the beginning of the last century, which caused a reduction in the pace of construction, are noted. The most honored organizers, designers and builders of the Amur Bridge are mentioned. Construction materials and places of their extraction, as well as suppliers of structural steel used in the construction of a unique transportation structure are specified. The methods of construction and assembly of the main load-bearing elements of the bridge structure are considered. Special attention is paid to the study of chemical composition, micro- and macrostructure, hardness of structural steels used in the manufacture of bridge spans. Conclusions about the conformity of the chemical composition of the investigated materials to the alloys specified in the current normative documentation, as well as the method of their smelting are formed. Modern metal materials used in the reconstruction of the bridge crossing at the beginning of the XXI century are given for comparison. The functionality of the bridge after reconstruction is reflected and the potential of its further development is given. A promising method of increasing the complex of characteristics of metal products by processing billets in solid-liquid state, which allows to reduce the metal consumption of structures, is considered.
O.N. KOMAROV1, Candidate of Sciences (Engineering), Assistant Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. VOLKOV2, Chief Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Khabarovsk Federal Research Center FEB RAS, Institute of Mechanical Engineering and Metallurgy FEB RAS (1, Metallurgov Street, Komsomolsk-on-Amur, 681005, Russian Federation)
2 Khabarovsk Federal Research Center FEB RAS, Institute of Mining FEB RAS (51, Turgeneva Street, Khabarovsk, 680000, Russian Federation)

1. Lisitsyn A.A. Construction of a railway bridge across the Amur near Khabarovsk (1913–1917). Proektirovanie razvitiya regional’noi seti zheleznykh dorog. 2016. No. 4, pp. 259–273. (In Russian).
2. Burkova V.V. Creators of the Amur Bridge. Put’ i putevoe khozyaistvo. 2017. No. 7, pp. 38–40. (In Russian).
3. Beckert M., Klemm H. Sposoby metallurgicheskogo travleniya [Methods of metallurgical etching]. Moscow: Metallurgiya. 1988. 400 p.
4. Bokshtein B.S., Veksler Yu.G., Glezer A.M., Drozdovsky B.A. Metallovedenie i termicheskaya obrabotka stali [Metallurgy and heat treatment of steel]. Moscow: Metallurgiya. 1991. 464 p.
5. Filinov S.A., Firger I.V. Spravochnik termista [Thermist’s Handbook]. Moscow-Leningrad: Mashinostroenie. 1964. 244 p.
6. Shmykov A.A. Spravochnik termista [Thermist’s Handbook]. Moscow: Mashinostroenie. 1961. 392 p.
7. Gulyaev A.P. Metallovedeniye [Metallurgy]. Moscow: Metallurgiya. 1986. 544 p.
8. Sokolov R.A., Novikov V.F., Muratov K.R., Venediktov A.N. Determination of the relationship between the factor of different grain sizes and the corrosion rate of structural steel. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2020. Vol. 22. No. 3, pp. 106–125. (In Russian). DOI: 10.17212/1994-6309-2020-22.3-106-125
9. Sergeev Yu.G., Sharapova D.M. Study of the chemical composition, hardness and metal structure of welded joints made of 15HSND steel in relation to bridge span structures. Voprosy materialovedeniya. 2009. No. 4 (60), pp. 89–100. (In Russian).
10. Sergeeva A.M. Lovizin N.S. Experimental setup and methodology for studying the formation and changes in the structure of metal solidifying under thermomechanical influence. Tekhnologiya materialov. 2023. No. 5, pp. 17–25. (In Russian). DOI: 10.31044/1684-2499-2023-0-5-17-25
11. Sosnin A.A., Zhilin S.G., Komarov O.N. Analytical forecasting of the stability of the process of forming an extended forging in a device for casting and metal deformation. Uchenye zapiski of Komsomolsk-on-Amur State Technical University. 2021. No. 3 (51), pp. 62–64. (In Russian). DOI: 10.17084/20764359-2021-51-62
12. Barsukova N.V., Komarov O.N., Zhilin S.G., Predein V.V., Popov A.V., Khudyakova V.A. Control of the properties of iron-carbon alloys obtained by aluminothermy, varying technological factors. Metallurg. 2023. No. 5, pp. 94–107. (In Russian). DOI: 10.52351/00260827_2023_08_94
13. Patent RF 2761835. Ustroistvo dlya nepreryvnogo lit’ya i deformatsii ploskikh zagotovok [Device for continuous casting and deformation of flat workpieces]. Sergeeva A.M., Lovizin N.S. Declared 14.07.2021. Publ. 13.12.2021. Bull. No. 35. (In Russian).
14. Sergeeva A.M., Lovizin N.S. The features of combining horizontal continuous casting with simultaneous metal deformation in solid-liquid state. Metallurgist. 2022. Vol. 66, pp. 982–988. https://doi.org/10.1007/s11015-022-01410-2
15. Volkov A.F. Features of the formation of a system of preferential pension provision in the Far East: history and current state. Sotsial’nye i gumanitarnye nauki na Dal’nem Vostoke. 2010. No. 3 (27), pp. 118–123. (In Russian).
16. Volkov A.F. Historical conditions and features of the formation of the system of benefits and pensions in the Far East in the 19th and early 20th centuries. Vlast’ i upravlenie na Vostoke Rossii. 2007. No. 4 (41), pp. 123–128. (In Russian).

For citation: Komarov O.N., Volkov A.F. About some properties of structural steel used in the construction of a railway bridge over the Amur river in the early XX century. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 57–65. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-57-65

Shallow Foundation With a Modified Shape of the Base

Number of journal: 3-2024
Autors:

Bay V.F., 
Safaryan V.S.

DOI: https://doi.org/10.31659/0044-4472-2024-3-52-56
УДК: 624.15

 

AbstractAbout AuthorsReferences
The issue of optimizing the construction of shallow foundations is considered, due to the change of the base to a stepped one. Optimization involves reducing the cost of construction of a zero-cycle without losing the strength, reliability and durability of the object. The study was conducted in several stages, including numerical modeling, laboratory tests and field tests with foundation model. The simulation results showed that foundations with a flat base have a large shrinkage compared to foundations with a stepped base, varying from 6% to 28% depending on geological conditions and modeling techniques. Laboratory tests and a field experiment confirmed these results, showing that foundations with a stepped base have a lower draft relative to foundations with a flat base by at least 30%. In addition, stepped foundations turned out to be more resistant to random eccentricities and eccentric loading. The study makes it possible to assert that the use of foundations with the proposed geometry can lead to significant savings by reducing material and resource consumption, as well as provide additional load-bearing capacity. These conclusions can be useful in choosing the optimal type of foundation for objects with shallow foundations.
V.F. BAY, Candidate of Sciences (Engineering), Head of the Department of “Building structures” (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.S. SAFARYAN, Postgraduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Tyumen Industrial University (38, Volodarskogo Street, Tyumen, 625000, Russian Federation)

1. Kyatov N.Kh., Kyatov R.N. Proektirovanie osnovanii i fundamentov [Design of bases and foundations]. Moscow: Yurait. 2023. 327 p.
2. Bai V.F., Safaryan V.S. Improving the efficiency of shallow foundations. Arkhitektura, stroitel’stvo, transport. 2022. No. 1 (99), pp. 65–72. (In Russian). DOI: 10.31660/2782-232X-2022-1-65-72
3. Sokolov N.S., Sokolov S.N., Sokolov A.N. Fine-grained concrete as a structural building material of drilling piles ERT. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 16–19. (In Russian).
4. Glushkov A.V., Glushkov V.E. Analysis of cruciform foundation bases based on ultimate strain. Vestnik of Volga State University of Technology. Materials. Constructions. Technologies. 2017. No. 1, pp. 39–46. (In Russian). EDN YIZHUP.
5. Patent RF 2529977 C2. Fundament s vystupami po podoshve [Foundation with projections by foot portion]. Glushkov V.E., Bartolomei L.A., Glushkov A.V. Declared 01.02.2013. Published 10.10.2014. Bulletin № 28. (In Russian).
6. Pronozin Ya.A., Naumkina Yu.V., Epifantseva L.R., Geidt L.V. Design model for strip shell foundation-soil interaction effects. Geotekhnika. 2016. No. 6, pp. 18–24. (In Russian). EDN XRFUEZ.
7. Patent RF 2393297 C1. Fundament [Basement]. Pronozin Ya.A., Poroshin O.S., Epifantseva L.R., Naumkina Yu.V., Stepanov M.A. Declared 27.02.2012. Published 27.08.2013. Bulletin № 24. (In Russian).
8. Hong T., Teng J. G., Luo Y.F. Axisymmetric shells and plates on tensionless elastic foundations. International Journal of Solids and Structures. 1999. Vol. 36. No. 34, pp. 5277–5300. DOI: 10.1016/s0020-7683(98)00228-5
9. Das B.M., Sobhan Kh. Principles of geotechnical engineering. Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States: Cengage Learning. 2012. 756 p.
10. Safaryan V.S. Freestanding foundation with stepped base. Results of a full-scale experiment. Arkhitektura, stroitel’stvo, transport. 2023. № 4 (106), pp. 17–25. (In Russian). DOI: 10.31660/2782-232X-2023-4-17-25
11. Gritsuk M.S. Rational design of plates for strip foundations. Doctor Diss. (Engineering). Brest. 1998. 283 p. (In Russian).
12. Sokolov R.V., Dorofeeva O.S. Development of non-traditional forms of resource-saving foundations. Education: professional debut: Collection of materials of the VII International Student Scientific and Practical Conference. Kumertau. 2021. pp. 236–241. (In Russian). EDN VDWHBS.
13. Rybin V.S., Rybina L.V. Determination of optimal shape and dimensions of the lower surface of eccentrically loaded shallow foundations. Osnovaniya, fundamenty i mekhanika gruntov. 2012. No. 1, pp. 6–9. (In Russian).

For citation: Bay V.F., Safaryan V.S. Shallow foundation with a modified shape of the base. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 52–56. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-52-56

Assessment of the Possibility of Excluding Secondary Heating of the Inflow During the Warm Period in Modern Climatic Conditions

Number of journal: 3-2024
Autors:

Samarin O.D.

DOI: https://doi.org/10.31659/0044-4472-2024-3-47-51
УДК: 697.001:628.8

 

AbstractAbout AuthorsReferences
The subject of the study is the dependence on the required indoor air temperature and the accepted inflow temperature for a minimum heat and humidity ratio in the room, in which secondary heating of inflow can be excluded. The purpose of the study is to obtain an analytical expression of this dependence, which allows an engineering assessment of the possibility of eliminating secondary heating in the process of designing air conditioning systems without the use of graphical constructions. The objective of the study is to represent an adequate flow processing scheme on the I–d diagram, identify the main factors affecting the minimum heat and humidity ratio in the room and obtain the necessary numerical coefficients in formulas linking the desired and initial parameters. Research results. An analytical dependence is obtained that allows calculating the minimum possible value of the heat and humidity ratio in a room in which secondary heating is not required, and only cooling of the inflow with drying in a surface air cooler is sufficient if it has a bypass channel. The presentation is illustrated with numerical and graphical examples.
O.D. SAMARIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Малявина Е.Г., Маликова О.Ю., Фам В.Л. Метод выбора расчетных температуры и энтальпии наружного воздуха в теплый период года // АВОК. 2018. № 3. С. 60–69.
1. Malyavina E.G., Malikova O.Yu., Fam V.L. Method for selection of design temperatures and outside air enthalpy during warm period of the year. AVOK. 2018. No. 3, pp. 60–69. (In Russian).
2. Belussi L., Barozzi B., Bellazzi A., Danza L., Devitofrancesco A., Ghellere M., Guazzi G., Meroni I., Salamone F., Scamoni F., Scrosati C., Fanciulli C. A review of performance of zero energy buildings and energy efficiency solutions. Journal of Building Engineering. 2019. Vol. 25. 100772. https://doi.org/10.1016/j.jobe.2019.100772
3. Zhiwei Wang, Yao Chen, Man Zhou, Jin Wu, Menglu Zhang. A clustering method with target supervision for the thermal climate division of residential buildings in the hot summer and cold winter area of China. Journal of Building Engineering. 2021. Vol. 43. 103156. https://doi.org/10.1016/j.jobe.2021.103156
4. Ryzhov A., Ouerdane H., Gryazina E., Bischi A., Turitsyn K. Model predictive control of indoor microclimate: existing building stock comfort improvement. Energy Conversion and Management. 2019. Vol. 179, pp. 219–228. https://doi.org/10.1016/j.enconman.2018.10.046
5. Sha H., Xu P., Yang Z., Chen Y., Tang J. Overview of computational intelligence for building energy system design. Renewable and Sustainable Energy Reviews. 2019. Vol. 108, pp. 76–90. https://doi.org/10.1016/j.rser.2019.03.018
6. Malyavina E.G., Malikova O.Yu. Comparison of the completeness of the climate probability-statistic model and the reference year model. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 365. Iss. 2. 022009. DOI 10.1088/1757-899X/365/2/022009
7. Малявина Е.Г., Маликова О.Ю. Влияние расчетных параметров наружного воздуха на энергетические показатели систем кондиционирования воздуха // Энергосбережение и водоподготовка. 2022. № 2. С. 12–16.
7. Malyavina E.G, Malikova O.Yu. Influence of calculated parameters of outdoor air on the energy performance of air conditioning systems. Energosberezheniye i vodopodgotovka. 2022. No. 2, pp. 12–16. (In Russian).
8. Малявина Е.Г., Маликова О.Ю. Сравнение исходной климатической информации для расчетов сезонного энергопотребления аппаратами кондиционирования воздуха // Известия вузов. Строительство. 2022. № 10. С. 37–45.
8. Malyavina E.G, Malikova O.Yu. Comparison of initial climatic information for calculations of seasonal energy consumption by air conditioning units. Izvestiya of higher educational institutions. Construction. 2022. No. 10, pp. 37–45. (In Russian).
9. Винский П.В., Самарин О.Д. Анализ Постановления Правительства РФ от 27 мая 2022 года № 963 // СОК. 2023. № 2. С. 53–57.
9. Vinskii P.V., Samarin O.D. Analysis of the Decree of the Government of the Russian Federation № 963 dated May 27, 2022. SOK. 2023. No. 2, pp. 53–57. (In Russian).
10. Малявина Е.Г., Самарин О.Д. Строительная теплофизика и микроклимат зданий. 2-е изд. М.: Изд-во МИСИ–МГСУ, 2022. 288 с.
10. Malyavina E.G., Samarin O.D. Stroitel’naya teplofizika i mikroklimat zdanij [Building thermal physics and building microclimate]. Moscow: MGSU-MISI Publishers. 2022. 288 p.

For citation: Samarin O.D. Assessment of the possibility of excluding secondary heating of the inflow during the warm period in modern climatic conditions. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-47-51

Problems and Experience of Practical Training of Masters in the Field of «Construction»

Number of journal: 3-2024
Autors:

Akulova I.I.,
Slavcheva G.S.

DOI: https://doi.org/10.31659/0044-4472-2024-3-41-46
УДК: 378

 

AbstractAbout AuthorsReferences
The problems and organizational and methodological approach to conducting technological and design practices of master’s students studying in the direction of 04/08/01 «Construction» are presented. It is proposed to organize these types of practices at the basic enterprise of the construction complex as a single process based on a combination of interdisciplinary, group and project approaches. Undergraduates divided into subgroups successively implement the common task to the team, first on technological, and then on design practice. The main task of the technological practice is to audit the quality and marketing systems of the base enterprise, which ends with the definition of its production and marketing problems. After defending the report, which contains, in addition to the team, an individual task for each member of the subgroup, undergraduates are given a task for project practice. Being a logical continuation of the previous one, it is associated with the development of measures to eliminate the identified problems, the calculation of financial costs for their implementation and the forecast assessment of changes in the cost of finished products. The approach considered in the article has been implemented for undergraduates within educational program «Quality Expertise and Marketing of Building Materials» at the Voronezh State Technical University. The proposed methodology of organizing practices contributes to improving the level of professional competencies that are formed in the process of practical training of undergraduates. The methodology, according to the authors, can be replicated for other master’s degree programs in the field of «Construction».
I.I. AKULOVA, Doctor of Sciences (Economics), (This email address is being protected from spambots. You need JavaScript enabled to view it.),
G.S. SLAVCHEVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Voronezh State Technical University (84, 20 let Oktyabrya Street, Voronezh, 394006, Russian Federation)

1. Lider A.M., Slesarenko I.V., Solov’ev M.A. Best practices of engineering training in world leading universities. Universitetskoe upravlenie: praktika i analiz. 2021. Vol. 25. No. 1, pp. 18–34. (In Russian).DOI: 10.15826/umpa.2021.01.002
2. Erofeeva A.A., Molodykh S.A. Integration of education, science and production in the organization of internships of students in the specialty «Construction». Nauchnyi rezul’tat. Pedagogika i psikhologiya obrazovaniya. 2019. Vol. 5. No. 1, рр. 50–58. (In Russian). DOI: 10.18413/2313-8971-2019-5-1-0-4
3. Gorshkova O.O. Implementation of modular engineering programs in collaboration with employers. Obrazovanie i samorazvitie. 2022. Vol. 17. No. 1, рр. 120–135. (In Russian). DOI: 10.26907/esd.17.1.11
4. Starodubtsev V.A. Practice-centered education in higher school. Vysshee obrazovanie v Rossii. 2021. Vol. 30. No. 5, рр. 75–87. (In Russian). DOI: 10.31992/0869-3617-2021-30-5-75-87
5. Blinov V.I., Satdykov A.I., Seliverstova I.V. Сurrent state of interaction between vet institutions and enterprises. Obrazovanie i nauka. 2021. Vol. 23. No. 7, рр. 41–70. (In Russian). DOI: 10.17853/1994-5639-2021-7-41-70
6. Nikiforova E.V. Practice-oriented project training – a modern model of higher education. Ekonomika. Biznes. Banki. 2018. No. 2 (23), рр. 168–178. (In Russian).
7. Popova N.A. Project learning technology at higher school as a practical training format. Sovremennaya vysshaya shkola: innovatsionnyi aspekt. 2020. Vol. 12. No. 4 (50), рр. 85–91. (In Russian). DOI 10.7442/2071-9620-2020-12-4-85-91
8. Lukmanova I.G., Adamenko M.B. Formation of an innovative scientific-educational-industrial cluster in construction industry. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 7, рр. 52–56.(In Russian).
9. Glukhareva S.V., Nemirovich-Danchenko M.M., Davydova E.M., Buintsev D.N. Group design training the system of human resources preparation. Sovremennye naukoemkie tekhnologii. 2020. No. 4–1, pp. 110–114. (In Russian). DOI: 10.17513/snt.37982
10. Praslov V.A., Akulova I.I., Shchukina T.V. Problems and directions of improving the training of personnel in the context of implementing the strategy of innovative development of construction industry. Promyshlennoe i grazhdanskoe stroitel’stvo. 2018. No. 2, рр. 76–81. (In Russian).
11. Lizunkov V.G., Politsinskaya E.V., Ergunova O.T. Development of the team competence among graduates of technical universities on the basis of collaborative learning. Perspektivy nauki i obrazovaniya. 2021. No. 1 (49), рр. 92–112. (In Russian). DOI: 10.32744/pse.2021.1.7
12. Gansuar K.Dr., Neretina E.A., Korokoshko Yu.V. Experience of project-oriented learning and organization of teamwork among university students. Integratsiya obrazovaniya. 2015. Vol. 19. No. 2, рр. 22–30. (In Russian). DOI: 10.15507/Inted.079.019.201502.022
13. Krezhevskikh O.V. Transdisciplinary approach in science and education. Filosofiya obrazovaniya. 2020. Vol. 20. No. 4, рр. 32–47. (In Russian). DOI: 10.15372/PHE20200403
14. Akulova I.I., Slavcheva G.S. Update of Master’sdegree programs in the field of «Construction» under consideration of the construction industry needs.Vysshee obrazovanie segodnya. 2020. No. 6, рр. 31–36. DOI: 10.25586/RNU.HET.20.06.P.31
15. Akulova I.I., Kruglyakova V.M., Panfilov D.V. On the development of measures to support the construction industry in the context of sanctions (regional aspect). Zhilishchnoe stroitel’stvo [Housing Construction]. 2023. No. 8, рр. 3–10. DOI: https://doi.org/10.31659/0044-4472-2023-8-3-10

For citation: Akulova I.I., Slavcheva G.S. Problems and experience of practical training of masters in the field of «Construction». Zhilishchnoe Stroitel'stvo [Housing Construction]. 2024. No. 3, pp. 41–46. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-41-46

https://www.traditionrolex.com/11