Numerical Simulation of Compensation Injection Problems Near Deep Excavations

Number of journal: 4-2024
Autors:

Ter-Martirosyan A.Z.,
Kivlyuk V.P.,
Isaev I.O.

DOI: https://doi.org/10.31659/0044-4472-2024-4-23-30
УДК: 624.15

 

AbstractAbout AuthorsReferences
The stress-strain state (SSS) of the “ground foundation – foundation pit under the protection of a fence – compensation injection zone” system is complex, multifactorial and transforming in space. Taking into account a wide range of phenomena when changing the SSS of the soil base is associated with significant difficulties, especially without the use of numerical modeling using software and computer systems. Numerical modeling in the implementation of the finite element method (FEM) for the problems of complex interaction of a soil basis with underground structures during compensatory grouting makes it possible to assign injection zones in any position in space (horizontally, vertically, at an angle), determine the necessary injection parameters to achieve the building lifting of the soil basis when solving the inverse problem. In this study, using examples of numerical modeling of compensation grouting problems near the pit fence with different locations of existing buildings, the authors identified the determining factors affecting the distribution of internal forces in the enclosing structures of the excavation, as well as on the existing structures of the underground structure. The results of comparison of calculations in two-dimensional and three-dimensional formulations are presented, an increase in the bending moment of the retaining wall when carrying out work on compensatory injection by 187–279% is shown for different parameters of the distance to the grouting horizon. The results of the conducted studies confirm the need to take into account the increase in internal efforts during the work on compensatory injection in the structures of the pit fences when assigning reinforcement. In addition, in some cases it is necessary to provide additional protective measures to prevent a negative impact on the constructed underground structures to reduce emergency situations.
A.Z. TER-MARTIROSYAN1, Doctor of Sciences (Engineering), Vice-Rector (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.P. KIVLYUK2, Executive Director – Head of the Direction (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.O. ISAEV2, Head of the Impact Assessment and Emergency Response Department (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)
2 JSC «Mosinzhproekt» (8, 10, Khodynsky Boulevard, Moscow, 125252, Russian Federation)

1. Мангушев Р.А., Денисова О.О. Влияние технологического воздействия изготовления горизонтальной диафрагмы методом jet-grouting на ограждение котлована типа «стена в грунте» // Жилищное строительство. 2022. № 9. С. 25–31. DOI: https://doi.org/10.31659/0044-4472-2022-9-25-31
1. Mangushev R.A., Denisova O.O. The effect of the technological impact of the manufacture of a horizontal diaphragm by jet-grouting on the fencing of a pit of the slurry wall. Zhilishchnoye Stroitelstvo [Housing Construction]. 2022. No. 9, pp. 25–31. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-9-25-31
2. Wu, Ke & Cui, Shuaishuai & Liu, Yuping & Zhang, Qianjin & Zhao, Jiahui & Zhang, Zheng & Han, Yucong. Study on the mechanism of grouting under different tunnel depth of cross passage. Geotechnical and Geological Engineering. 2020. 38. 10.1007/s10706-020-01185-w
3. Gafar K. International society for soil mechanics and geotechnical engineering fracturing of sand in compensation grouting. International society for soil mechanics and geotechnical engineering. 2009. P. 281–286.
4. Bestuzheva A.S., Chubatov I.V. Numerical modeling of the controlled lifting of the structure. IOP Conference Series: Materials Science and Engineering. 2020. No. 7 (869). 072018. DOI: 10.1088/1757-899X/869/7/072018
5. Bestuzheva A.S., Chubatov I.V. Numerical simulation of stress and strain behavior of foundation soil under compensation grouting. E3S Web Conf. 2021. P. 264, 03020. https://doi.org/10.1051/e3sconf/202126403020
6. Bestuzheva A.S., Chubatov I.V. Test problems in mathematical simulation of lifting and leveling a foundation on a sandy base. Power Technology and Engineering. 2021. No. 2 (55), pp. 226–232. DOI: 10.1007/s10749-021-01345-9
7. Рассказов Л.Н., Чубатов И.В., Буренков П.В. Напряженно-деформированное состояние сооружения при подъеме и выравнивании в результате неравномерной осадки // Промышленное и гражданское строительство. 2019. № 5. C. 60–64.
7. Rasskazov L.N., Chubatov I.V., Burenkov P.V. The stress-strain state of the structure during lifting and leveling as a result of uneven precipitation. Promyshlennoe i grazhdanskoe stroitel’stvo. 2019. No. 5, pp. 60–64. (In Russian).
8. Рассказов Л.Н., Чубатов И.В., Радзинский А.В. Создание инъекционного массива в песчаном основании зданий // Промышленное и гражданское строительство. 2017. № 6. C. 56–63.
8. Rasskazov L.N., Chubatov I.V., Radzinsky A.V. Creation of an injection array in the sandy base of buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 6, pp. 56–63. (In Russian).
9. Тер-Мартиросян З.Г., Сидоров В.В., Олодо Т.Д. Напряженно-деформированное состояние дамбы и ее основания с учетом их взаимодействия // Инженерная геология. 2011. № 2. C. 30–34.
9. Ter-Martirosyan Z.G., Sidorov V.V., Olodo T.D. The stress-strain state of the dam and its base taking into account their interaction. Inzhenernaya geologiya. 2011. No. 2, pp. 30–34. (In Russian).
10. Бестужева А.С., Чубатов И.В. Тестовые задачи при математическом моделировании подъема и выравнивания фундамента на песчаном основании // Гидротехническое строительство. 2021. № 2. C. 56–64.
10. Bestuzheva A.S., Chubatov I.V. Test problems in mathematical modeling of lifting and leveling of the foundation on a sandy foundation. Gidrotekhnicheskoe stroitel’stvo. 2021. No. 2, pp. 56–64. (In Russian).
11. Зерцалов М.Г., Симутин А.Н., Александров А.В. Применение технологии компенсационного нагнетания при ликвидации дополнительных деформаций основания гидротехнических сооружений на примере гидроузла Неккар // Гидротехническое строительство. 2017. № 4. C. 47–51.
11. Zertsalov M.G., Simutin A.N., Alexandrov A.V. Application of compensatory injection technology in the elimination of additional deformations of the base of hydraulic structures on the example of the Neckar hydraulic unit. Gidrotekhnicheskoe stroitel’stvo. 2017. No. 4, pp. 47–51. (In Russian).
12. Беллендир Е.Н. Защита и выравнивание зданий и сооружений с помощью технологии компенсационного нагнетания // Гидротехническое строительство. 2016. № 2. C. 15–19.
12. Bellendir E.N. Protection and alignment of buildings and structures using compensatory injection technology. Gidrotekhnicheskoe stroitel’stvo. 2016. No. 2, pp. 15–19. (In Russian).
13. Александров А.В. Опытное обоснование выравнивания здания Загорской ГАЭС-2 // Гидротехническое строительство. 2018. № 8. C. 7–16.
13. Alexandrov A.V. Experimental justification of the alignment of the Zagorskaya GAES-2 building. Gidrotekhnicheskoe stroitel’stvo. 2018. No. 8, pp. 7–16. (In Russian).
14. Zertsalov M. G., Simutin A. N., Aleksandrov A. V. Calculated substantiation of controlled compensation grouting for lifting the foundation slab of Zagorsk PSP-2. Power Technology and Engineering. 2019. No. 5 (52), pp. 512–516.

For citation: Ter-Martirosyan A.Z., Kivlyuk V.P., Isaev I.O. Numerical simulation of compensation injection problems near deep excavations. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 4, pp. 23–30. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-4-23-30


Print   Email