Личный кабинет

Modernization of Buildings of the First Mass Series

Number of journal: 3-2024
Autors:

Gorshkov A.S.,
Voilokov I.A.,
Orlovich R.B.

DOI: https://doi.org/10.31659/0044-4472-2024-3-26-34
УДК: 721

 

AbstractAbout AuthorsReferences
The research is devoted to the modernization of residential apartment buildings of the first mass series. The volumes of housing built in Soviet times are given. It is shown that with the saturation of the construction market in the construction industry, the emphasis should gradually shift from new construction towards the reconstruction of existing housing. To this end, a comprehensive program for the modernization of residential areas built up with buildings of the first mass series should be developed today. An example of the implementation of a detailed program abroad and a few experiences of modernization of panel buildings in Russia are shown. Specific measures that can be implemented within the framework of such a program are given. These include: the unification of neighboring apartments in order to increase the area and improve the functionality of the premises; the superstructure of additional floors; the addition of additional loggias, balconies and terraces to existing buildings; the reconstruction of the building in order to change its spatial planning solution; changing the architectural appearance of the building by decorating the facades with a simultaneous increase in the comfort level of the premises, increasing the sound, fire and thermal insulation functions of the building. The paper also describes the risks of implementing such projects and shows the sources of their financing.
A.S. GORSHKOV1, Doctor of Sciences (Еngineering), Professor of the Department of Intelligent Systems and Information Security (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.A. VOILOKOV2, Candidate of Sciences (Engineering), Associate Professor of the Department of Construction Organization (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.B. ORLOVICH3, Doctor of Sciences (Engineering), Professor, Scientific Consultant (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint Petersburg State University of Industrial Technologies and Design (18, Bolshaya Morskaya Street, St. Petersburg, 191186, Russian Federation)
2 Saint Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeiskaya Street, St. Petersburg, 190005, Russian Federation)
3 OOO «PI Georeconstruktsiya» (4, Izmailovsky pr., St. Petersburg, 190005, Russian Federation)

1. Prokofeva I.A. Khrushchevki – demolition or reconstruction: current trends. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 4, pp. 43–46. (In Russian).
2. Lebedeva E.N. Approaches to the transformation of the residential environment of the «Gray Belt» of St. Petersburg, taking into account the pandemic. Inzhenerno-stroitelnyi vestnik Prikaspiya. 2021. No. 1 (35), pp. 57–65. (In Russian).
3. Vishnivetskaya A.I., Korshunova E.M., Korshunov A.F. Improvement of the mechanism of renovation of territories of standard residential development in St. Petersburg. Vestnik grazhdanskikh inzhenerov. 2019. No. 3 (74), pp. 209–215. (In Russian). DOI: 10.23968/1999-5571-2019-16-3-209-215
4. Korshunova E.M., Vishnivetskaya A.I. Modern problems of development of built-up areas. Vestnik grazhdanskikh inzhenerov. 2018. No. 2 (67), pp. 258–263. (In Russian).
5. Varlamov A.A., Rimshin V.I., Tverskoi S.Yu., Chikota S.I. Innovative experience of large-panel housing construction in Magnitogorsk. Stroitelstvo i rekonstruktsiya. 2019. No. 3 (83), pp. 63–71. (In Russian). DOI: 10.33979/2073-7416-2019-83-3-63-71
6. Vishnivetskaya A.I., Korshunova E.M. Ensuring the complexity of the renovation of built-up areas. Vestnik grazhdanskikh inzhenerov. 2018. No. 6 (71), pp. 214–220. (In Russian). DOI: 10.23968/1999-5571-2018-15-6-214-220
7. Sokolov N.S. The technology of strengthening the foundations in cramped conditions wit h the superstructure of four additional floors. Stroitel’nye Materialy [Construction Materials]. 2018. No. 7, pp. 31–36. (In Russian). DOI: 10.31659/0585-430Х-2018-761-7-31-36
8. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
9. Sokolov N.S., Sokolov S.N., Sokolov A.N., Fedorov P.Yu. The use of electric discharge technology bored piles as increased bearing capacity foundations base. Promyshlennoe i grazhdanskoe stroitelstvo. 2017. No. 9, pp. 66–70. (In Russian).
10. Goncharov Yu.A., Dubrovina G.G. Achieving ergonomics in architecture through the use of facade decor based on mineral wool. Stroitel’nye Materialy [Construction Materials]. 2019. No. 3, pp. 14–18. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-768-3-14-18
11. Gorshkov A.S., Kabanov M.S., Yuferev Yu.V. Analysis of thermal loads and specific heat consumption in apartment buildings. Teploenergetika. 2021. No. 8, pp. 72–80. (In Russian). DOI: 10.1134/S0040363621050052
12. Gorshkov A.S., Vatin V.S., Rymkevich P.P. Climate change and the thermal island effect in the million-plus city. Construction of Unique Buildings and Structures. 2020. No. 4 (89), pp. 8902. DOI: 10.18720/CUBS.89.2
13. Klimenko V.V., Fedotova E.V., Tereshin A.G. Vulnerability of the Russian power industry to the climate change. Energy. 2018. 142, pp. 1010–1022. DOI: 10.1016/j.energy.2017.10.069
14. Klimenko V.V., Klimenko A.V., Tereshin A.G., Fedotova E.V. Climatic extremes – a new challenge for Russian energy systems. Teploenergetika. 2021. No. 3, pp. 3–17. (In Russian). DOI: 10.1134/S004036362103005X
15. Milkov D.A., Yuferev Yu.V., Tyutyunnikov A.I., Gorshkov A.S. Climate change and its impact on the engineering and energy complex (on the example of St. Petersburg). Teploenergetika. 2023. No. 3, pp. 87–96. (In Russian). DOI: 10.56304/S0040363623030049
16. Khendriks A., Volovich N.V. Renovation in East Germany: a program to support «disappearing» cities. Imushchestvennye otnosheniya v rossiiskoi federatsii. 2018. No. 5 (200), pp. 26–42. (In Russian). DOI: 10.24411/2072-4098-2018-15002
17. Gorshkov A.S. A model for estimating the projected payback period of energy saving investments. Vestnik MGSU. 2015. No. 12, pp. 136–146. (In Russian).
18. Tseitin D.N., Yatin N.I., Nemova D.V. i dr. Feasibility study of facade insulation during renovation of residential buildings of the first mass series. Stroitelstvo unikalnykh zdanii i sooruzhenii. 2016. No. 1 (40), pp. 20–31. (In Russian). DOI: 10.18720/CUBS.40.2

For citation: Gorshkov A.S., Voilokov I.A., Orlovich R.B. Modernization of buildings of the first mass series. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 26–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-26-34

Plastic of Facades in the Technology of a Three-Layer Facade Panel

Number of journal: 3-2024
Autors:

Kurnikov D.V.,
Makarov N.A.

DOI: https://doi.org/10.31659/0044-4472-2024-3-12-18
УДК: 692.23

 

AbstractAbout AuthorsReferences
It is noted that the task of forming plastic facades is directly opposite to the idea of industrialization in housing construction. Each time it is a search for a balance between unification and diversity. In most cases, domestic architects and designers have to adhere to the principle of unification due to the need to comply with factory technology. A flat panel of the same type is convenient and technologically advanced. Fewer operations during equipment readjustment, fewer risks and more turnover of the formwork. As a result, the cost of construction is reduced. To overcome the negatively perceived image of a panel house, it is necessary to ensure the diversity and plasticity of facade panels, silhouette and sculpturality of three-dimensional composition, the use of projections, undercuts, recessed attic floors and terraces.
D.V. KURNIKOV1, Engineer, Managing Partner;
N.A. MAKAROV2, Architect, Head of the Architectural Bureau

1 LLC “Inarbi” (57, bldg. 1, Gilyarovskogo Street, Moscow, 129110, Russian Federation)
2 LLC “BBM-project” (57, bldg. 1, Gilyarovskogo Street, Moscow, 129110, Russian Federation)

1. Teshev I.D., Korosteleva G.K., Popova M.A., Shchedrin Yu.N. Modernization of housing module prefabrication plants. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 10–13. (In Russian).
2. Kastornykh L.I., Kaklyugin A.V., Gikalo M.A., Trishchenko I.V. Features of the composition of concrete mixes for concrete pumping technology. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 4–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-4-11
3. Ambartsumyan S.A., Manukyan A.V., Mkrtychev O.V., Andreev M.I. Verification of calculation methods based on experimental studies of fragments of reinforced concrete blocks. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 6, pp. 73–77. (In Russian). DOI: 10.33622/0869-7019.2023.06.73-77
4. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem. Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI: 10.5937/jaes15-14719
5. Nikolaev S.V. Revival of House Building Factories on the Basis of Domestic Equipment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 10, pp. 4–9. (In Russian).
6. Rumyantsev E.V., Bayburin A.Kh. The features of using self-compacting fine-grained fresh concrete during winter concreting of joints. Stroitel’nye Materialy [Construction Materials]. 2022. No. 6, pp. 51–57. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2022-803-6-51-57
7. Rumyantsev E.V., Bayburin A.Kh., Solov’ev V.G., Ahmed’yanov R.M., Bessonov S.V. Technological parameters of the quality of self-compacting finegrained fresh concrete for winter concreting. Stroitel’nye Materialy [Construction Materials]. 2021. No. 5, pp. 4–14. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-791-5-4-14
8. Guryev V.V., Dmitriev A.N., Yakhkind S.I. Experimental and standard design – a strategic vector of development of industrial civil construction. Promyshlennoe i gragdanskoe stroitelstvo. 2022. No. 7, pp. 40–47. (In Russian).
9. Sokolov N.S., Sokolov S.N., Sokolov A.N. Fine-grained concrete as a structural building material of drilling piles ERT. Stroitel’nye Materialy [Construction Materials]. 2017. No. 5, pp. 16–19. (In Russian).
10. Guryev V.V., Yakhkind S.I. The main trends in the development of civil engineering at the present stage. ACADEMIA. Architectura i stroitelstvo. 2022. No. 3, pp. 97–103. (In Russian).
11. Patent RF 2250957. Sposob izgotovleniya nabivnoi svai [The method of manufacturing a printed pile]. Tavrin V.Yu., Sokolov N.S., Abramushkin V.A. Declared 14.07.2003. Published 27.04.2005. (In Russian).
12. Kurnikov D.V. Prospects for precast concrete for residential construction: design solutions with wide spacing of load-bearing transverse walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 14–19. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-14-19
13. Golovin N.G., Fedorov Yu.N., Kozlov A.S. BENPAN – innovation technology of prefabricated lowrise housing construction. Stroitel’nye Materialy [Construction Materials]. 2020. No. 3, pp. 24–26. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2020-779-3-24-26

For citation: Kurnikov D.V., Makarov N.A. Plastic of facades in the technology of a three-layer facade panel. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 12–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-12-18

Technological Sovereignty in the Russian Construction Industry

Number of journal: 3-2024
Autors:

Kazin A.S.

DOI: https://doi.org/10.31659/0044-4472-2024-3-8-11
УДК: 624.51

 

AbstractAbout AuthorsReferences
Technological sovereignty is a systemic program aimed at creating proprietary technologies that are needed in various areas of industry and the economy. These are not only IT solutions, but also technologies necessary for agriculture, heavy engineering, light industry, and energy. In May 2023, the Russian Federation adopted the Concept of Technological Development until 2030. This document contains the basic concepts and ideas of the conducted policy. An overview of the state of the construction industry until 2022 is given. It is shown that dependence on imported equipment has forced Russian machine-building companies to manufacture missing machines and mechanisms, and in some cases, comprehensive provision of house-building plants and precast concrete products plants with domestic equipment.
A.S. KAZIN, General Director (This email address is being protected from spambots. You need JavaScript enabled to view it.)

LLC “SMART-RCT” (21, bldg.1, room 18/1, Zvyozdniy Boulevard, Moscow, 129085, Russian Federation)

1. Korshunov A.N., Filatov E.F. Volumetric reinforced concrete block for housing construction with flexible apartment layouts.Flexible form-tooling and a stand for the manufacture of a volumetric block. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-11-18
2. Teshev I.D., Korosteleva G.K., Popova M.A., Shchedrin Yu.N. Modernization of housing module prefabrication plants. Stroitel’nye Materialy [Construction Materials]. 2016. No. 3, pp. 10–13. (In Russian).
3. RF Patent 2715781. Sposob proizvodstva ob»emnogo modulya [The method of production of the volumetric module]. Meshcheryakov A.S., Ambartsumyan S.A. Declared 19.08.2019. Publ. 03.20. Bull. No. 7. (In Russian).
4. Patent RF 2712845. Sposob izgotovleniya krupnogabaritnogo ob’’emnogo modulya [Method of manufacturing a large-sized volumetric module]. Meshcheryakov A.S., Ambartsumyan S.A. Declared 30.11.2018. Publ. 30.01.2020. Bull. No. 4. (In Russian).
5. Ambartsumyan S.A., Manukyan A.V., Mkrtychev O.V., Andreev M.I. Verification of calculation methods based on experimental studies of fragments of reinforced concrete blocks. Promyshlennoe i grazhdanskoe stroitel’stvo. 2023. No. 6, pp. 73–77. (In Russian). DOI: 10.33622/0869-7019.2023.06.73-77
6. Guryev V.V., Dmitriev A.N., Yakhkind S.I. Experimental and standard design – a strategic vector of development of industrial civil construction. Promyshlennoe i gragdanskoe stroitelstvo. 2022. No. 7, pp. 40–47. (In Russian).
7. Sokolov N.S. Technology for increasing the bearing capacity of the base. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-67-71
8. Yudin I.V., Petrova I.V., Bogdanov V.F. Improvement of constructive solutions, technology and organization of construction of large-panel and panel-frame houses of Volga DSK. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 4–8. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2017-746-3-4-8
9. Kurnikov D.V. Prospects for precast concrete for residential construction: design solutions with wide spacing of load-bearing transverse walls. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 14–19. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-14-19
10. Korshunov A.N., Filatov E.F., Gizzatullin A.R. New technology for manufacturing volumetric blocks – slipway for industrial housing construction with flexible apartmentography. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 10, pp. 28–34. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-10-28-34
11. Sokolov N., Ezhov S., Ezhova S. Preserving the natural landscape on the construction site for sustainable ecosystem // Journal of applied engineering science. 2017. Vol. 15. No. 4, pp. 518–523. DOI: 10.5937/jaes15-14719
12. Korshunov A.N., Filatov E.F. Volumetric reinforced concrete block for housing construction with flexible apartment layouts. Flexible form-tooling and a stand for the manufacture of a volumetric block. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 10, pp. 11–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-10-11-18
13. Patent RU218225U1. Ob”emnyi zhelezobetonnyi blok dlya domostroeniya s gibkoi kvartirografiei [Volumetric reinforced concrete block for housing construction with flexible apartment construction]. Korshunov A.N. Declared 27.07.22. Publ. 16.05.2023. Bull. No. 14. (In Russian).

For citation: Kazin A.S. Technological sovereignty in the Russian construction industry. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 8–11. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-8-11

The Effect of the Crane Load on the Floor Slab Made Using a 3D Printer

Number of journal: 3-2024
Autors:

Dmitriev A.V.,
Razov I.O.

DOI: https://doi.org/10.31659/0044-4472-2024-3-3-7
УДК: 624.073

 

AbstractAbout AuthorsReferences
The possibility of installing a floor slab made using additive technologies by layer-by-layer printing by a crane in the design position is being studied. According to the design, this plate consists of an outer and an inner layer, which are connected by an undulating inner element. The floor slab measuring 4.8х5 meters is planned to be manufactured on the ground in a vertical position, then the structure is transferred to a horizontal position by a crane and mounted in the design position. For this design, the finite element method is used to calculate 3 cases for the action of a crane load. The calculation results showed that when the structure is rearranged in a vertical position, the probability of tearing off the sling loops is high. When the structure is rotated from a vertical position to a horizontal position, cracks opening of more than 0.5 mm are observed in uncovered areas. When lifting the plate in a horizontal position by a crane and installing it in the design position, there is a multiple crack opening of more than 0.5 mm. Based on the calculation results, it was concluded that printing large floor slabs in a vertical position is not advisable, since during subsequent installation the structure receives multiple cracks and is not suitable for overlapping a residential building.
A.V. DMITRIEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.O. RAZOV, Candidate of Sciences (Engineering)

Tyumen Industrial University (38, Volodarskogo Street, Tyumen, 625000, Russian Federation)

1. Fayzollin M.M., Chernavin V.Yu. Additive technologies for manufacturing floor slabs of large-panel buildings in civil engineering. Nauchnye gorizonty. 2022. No. 5 (57), pp. 80–86. (In Russian).
2. Anton A., Jipa A., Reiter L., Dillenburger B. Fast complexity: additive manufacturing for prefabricated concrete slabs. RILEM International Conference on Concrete and Digital Fabrication. DC 2020: Second RILEM nternational Conference on Concrete and Digital Fabrication. 2020. Vol. 28, pp. 1067–1077. https://doi.org/10.1007/978-3-030-49916-7_102
3. Luneva D.A. Kojevnikova E.O., Kaloshina S.V. Application of 3D printing in construction and prospects for its development. Vestnik of the Perm National Research Polytechnic University. Construction and architecture. 2017. No. 8 (1), pp. 90–101. (In Russian). DOI: 10.15593/2224-9826/2017.1.08
4. Maitenaz S., Charrier M., Mesnil R., Onfroy P., Metge N., Feraille A., Caron J.-F. Fabrication of a truss-like beam casted with 3D printed clay moulds. 2021. DOI: 10.22260/ISARC2021/0096
5. Dmitriev A.V., Sokolov V.G., Razov I.O. Reinforcement of walls and ceilings in the construction of buildings using additive technologies. Stroitel`naya mexanika i raschet sooruzhenij. 2023. No. 6 (311), pp. 74–80. (In Russian). DOI: 10.37538/0039-2383.2023.6.74.80
6. Razov I.O., Sokolov V.G. Dmitriev A.V., Erenchinov S.A. Proposal for the installation of overlap in the construction of buildings using additive technologies. Stroitel’nye Materialy [Construction Materials]. 2023. No. 10, pp. 116–120. (In Russian). DOI: 10.31659/0585-430X-2023-818-10-116-120
7. Ko M. Memari A., Duarte J., Nazarian Sh., Asghrafi N., Craveiro F., Bilén S. Preliminary structural testing of a 3D printed small concrete beam and finite element modeling of a dome structure. 2018.
8. Lapina A.I. Automation of optimal design of ceilings of monolithic frame buildings. Theory and practice of research and design in construction using computer-aided design (CAD) systems: collection of articles of the III International Scientific and Technical Conference. Brest: BrSTU. 2019, pp. 47–54. (In Russian).
9. Zhukyan P.P. Calculation of reinforced concrete slabs supported by contour. Vestnik of the Polotsk State University. Ser. F. Construction. Applied Science. 2014. No. 8, pp. 54–58. (In Russian).
10. Popov A.N., Khatuntsev A.A., Shashkov I.G., Kochetkov A.V. Spatial deformation nonlinear calculation of reinforced concrete bendable structures by the finite element method. Internet-zhurnal Naukovedenie. 2013. No. 5 (18), p. 105. (In Russian).

For citation: Dmitriev A.V., Razov I.O. The effect of the crane load on the floor slab made using a 3D printer. Zhilishchnoe Stroitel'stvo [Housing Construction]. 2023. No. 3, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-3-3-7

The Influence of the Quality of Coarse Aggregate on the Uniformity of the Properties

Number of journal: 1-2-2024
Autors:

Kovaleva A.Yu.,
Aubakirova I.U.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-109-113
УДК: 691.3

 

AbstractAbout AuthorsReferences
Industrial studies of the quality indicators of concrete mixtures (workability, water separation, mortar separation) and concretes (strength, uniformity of concrete in strength) have been carried out, depending on the characteristics of the filler used. The influence of fractionated and non-fractionated coarse aggregate on the properties of concrete mixtures and concretes was analyzed. It was confirmed that the use of fractionated coarse aggregate improves the quality indicators of concrete mixtures and concretes.
A.Yu. KOVALEVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.U. AUBAKIROVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg Petersburg State University of Architecture and Civil Engineering(4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Kharitonov A. Structural approach for numerical internal strain modelling of conglomerate structures. Architecture and Engineering. 2017. Vol. 2. No. 2, рp. 3–7. DOI: https://doi.org/10.23968/2500-0055-2017-2-2-3-7
2. Inozemtsev S.S., Susanina T.V., Stibunov D.V., Keita M.L.F. Trends in the development of scientific directions in the field of road construction materials in Russia (review). Stroitel’nye Materialy [Construction Materials]. 2023. No. 12, pp. 4–19. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2023-820-12-4-19
3. Khrenov G.M., Morozov V.I., Zhavoronkov M.I., Petrova T.M. The role of the filler in the formation of plastic properties of concrete mixtures. Vestnik grazhdanskikh inzhenerov. 2021. No. 5 (88), pp. 119–125. (In Russian). DOI: https://doi.org/10.23968/1999-5571-2021-18-5-119-125
4. Belov V.V., Smirnov M.A. Formation of the optimal macrostructure of the building mix. Stroitel’nye Materialy [Construction Materials]. 2009. No. 9, pp. 88–90.
5. Lopukhov V.Yu., Belentsov Yu.A., Zolotov V.M.A structural approach to the use of concretes with a low cement content. Vestnik of the BSTU named after V.G. Shukhova. 2014. No. 6, pp. 96–99. (In Russian)
6. Makeev A.I., Chernyshov E.M. Experimental studies of the regularity of the influence of the dimensional and geometric parameters of crushed stone on the potential of concrete resistance to destruction. Stroitel’stvo i rekonstruktsiya. 2018. No. 2 (76). 2018, pp. 122–134. (In Russian).
7. Kharo O.E., Levkova N.S., Butkevich G.R. The nomenclature of non-metallic building materials and the prospects for its expansion. Stroitel’nye Materialy [Construction Materials]. 2005. No. 12, pp. 81–84. (In Russian)
8. Lyapidevskaya O.B., Kamskov V.P. Osnovy stroitel’nykh norm (rossiiskikh i zarubezhnykh [Fundamentals of building codes (Russian and foreign)]. Moscow: MSUCE, 2017. 54 p. (In Russian).
9. Travush V.I., Karpenko N.I., Erofeev V.T., Erofe-eva I.V., Tarakanov O.V., Kondrashchenko V.I., Kesariyskiy A.G. The study of crack resistance of concretes of a new generation. Stroitel’nye Materialy [Construction Materials]. 2019. No. 10, pp. 3–11. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-775-10-3-11

For citation: Kovaleva A.Yu., Aubakirova I.U. The Influence of the quality of coarse aggregate on the uniformity of the properties of concrete mixture and concretee. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 109–113. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-109-113

Interaction of Structural Elements in the Overhead Transmission Power Line

Number of journal: 1-2-2024
Autors:

Senkin N.A.,
Filimonov A.S.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-101-108
УДК: 621.315.17

 

AbstractAbout AuthorsReferences
The analysis of the changes of tensile forces in conductors and earth wires is performed during their breakage and impact on the towers of overhead power line with a voltage of 330 kV. Based on the results, a mathematical model of a unified cable-stayed rod system consisting of steel towers, conductors and earth wires and insulating elements has been compiled. The system of equations of the model is solved iteratively using the MS Excel spreadsheet processor for various breakage cases. The dependences of tensile forces in conductors and earth wires during their breakage are presented, as well as the forces which correspond to an acting regime on towers in a linear circuit, taking into account the supporting effect of neighboring towers.
N.A. SENKIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. FILIMONOV, Master of Science, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Shevchenko E.V., Mitrakov V.A., Tanasoglo A.V. Determination of reduced gravity in case of wire breakage. Metallicheskie konstruktsii. 2010. Vol. 16. No. 3, pp. 189–198. (In Russian).
2. Tanasoglo A.V. Determination of reduced gravity in case of breaks in live wires and lightning protection cables of overhead power lines with a voltage of 35–110 kV. Metallicheskie konstruktsii. 2022. Vol. 28. No. 4, pp. 195–205. (In Russian).
3. Tanasoglo A.V., Garanzha I.M., Fedorova S.R. Monitoring of single-post free-standing supports of overhead power lines under the action of wind loads. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 12, pp. 73–78. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-12-73-78
4. Kuryanov V., Gurevich L., Timashova L., Fokin V. Plastically compressed steel – aluminum wires for new overhead. SIGRE. B2 – OVERHEAD LINES. Challenges & New Solutions in Design and Construction of New OHL. 2022, pp. 1–10.
5. Efimov E.N., Timashova L.V., Yasinskaya N.V. The causes and nature of damage to components of overhead power transmission lines with a voltage of 110–750 kV in 1997–2007. Energiya Edinoi seti. 2012. No. 5, pp. 32–41. (In Russian).
6. Vasy`lev V.N. Issledovanie prostranstvennoj raboty krestovoj reshetki pri naturnykh ispytaniyakh opor VL na Poligone DonNASA. Metallicheskie konstrukcii. 2018. Vol. 19. No. 1, pp. 15–25. (In Russian).
7. Mishchenko V.V. Installation of flexible connection wires and overhead power lines at hydroelectric power plants: design problems and ways to solve them. News of the All-Russian Scientific Research Institute of Hydraulic Engineering named after B.E. Vedeneev. 2022. Vol. 306, pp. 61–70. (In Russian).
8. Galiaskarov I.M., Misrikhanov M.Sh., Ryabchenko V.N. Once again about the cyclicity of accidents in the main networks of power systems. Elektrichestvo. 2019. No. 11, pp. 4–11. (In Russian). DOI: 10/24150/0013-5380-2019-11-4-11
9. Kirsanov M. An inductive method of calculation of the deflection of the truss regular type. Architecture and Engineering. 2016. Vol. 1. No. 3, pp. 14–17. (In Russian).
10. Volkov V. Control over distribution of construction loads on foundations of tower buildings. Architecture and Engineering. 2016. Vol. 1. No. 4, pp. 42–45. (In Russian).
11. Senkin N.A., Belyakova T.E. About accounting for the building foundation settlement and the vertical displacement of supports at calculation of tower-type structures. Vestnik grazhdanskikh ingenerov. 2022. No. 2 (91), pp. 36–44. (In Russian). DOI: 10.23968/1999-5571-2022-19-2-36-44
12. Senkin N.A. Consideration of progressive collapse in the design of overhead power transmission line supports. Vestnik grazhdanskikh ingenerov. 2022. No. 4, pp. 37–46. (In Russian) DOI: 10.23968/1999-5571-2022-19-4-37-46
13. Senkin N.A. Progressive collapse and restoration of overhead power lines structures. Izvestiya of higher educational institutions. Construction. 2023. Vol. 10, pp. 5–20. (In Russian). DOI: 10.32683/0536-1052-2023-778-10-5-20
14. Glazunov A.A. Rabota i raschet provodov i trossov [Work and calculation of wires and cables]. Moscow: Gosenergoizdat. 1956. 192 p.
15. Liu Chun-cheng, Chu Zheng-yu, Zhang Wei, Sun Xian-he. Study on iced and wire breaking-induced vibrations of long distance electricity tower-line system. International Conference on Future Electrical Power and Energy Systems. Energy Procedia. 2012. No. 17, pp. 834–842. (In Russian).

For citation: Senkin N.A., Filimonov A.S. Interaction of structural elements in the overhead transmission power line. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 101–108. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-101-108

Regression Analysis and Modeling of the Efficiency of Construction and Installation Works in the Conditions of the North

Number of journal: 1-2-2024
Autors:

Rudenko A.A.,
Kurenkova O.E.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-93-100
УДК: 721:624

 

AbstractAbout AuthorsReferences
The article is discussed the selection and assessment of factors which gives the impact on effectiveness of construction and installation works in the northern regions. Special emphasis is given to development of planning matrix for the selection of factors and the selection of the most significant factors determined by the method of expert assessments. Based on the results of the study, definitions were given for the most significant factors, taking into account their ranking in accordance with the unified rating scale adopted to bring qualitative and quantitative assessments into one measurement scale. Based on the generalized data of expert assessments on the selected factors influence on the productivity of construction and installation works in the northern regions of Russia (as the main indicator of works efficiency), the multiple regression equation was developed, and there was made an assessment of the ability to predict work productivity based on specific conditions.
А.А. RUDENKO, Doctor of Sciences (Economics), Candidate of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.),
О.Е. KURENKOVA, Post-graduate Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Desyatko E.N., Staroverov B.D., Gerasimenko A.A., Mazneva K.Y. Criteria for evaluating the quality of building materials used at capital repair of multi-apartment houses. Vestnik Grazhdanskikh Inzhenerov. 2020. No. 2 (79), pp. 264–271. (In Russian). DOI: https://doi.org/10.23968/1999-5571-2020-17-2-264-271
2. Biryukov A.N, Rudenko A.A., Biryakov Y.A. Tekhniko-ekonomicheskie i organizaczionnye aspekty vosstanovleniya ob’ektov voennoj infrastruktury [Technical, economic and organizational aspects of the restoration of military infrastructure facilities]. Saint Petersburg: ООО «R-KOPI». 2021. 284 p.
3. Kryanev A.A., Semenov S.S. On the issue of quality and reliability of expert judgments in determining the engineering level of complex systems. Nadezchnost. 2013. No. 4 (47), pp. 90–109. (In Russian). DOI: https://doi.org/10.21683/1729-2646-2013-0-4-90-109
4. Kurchenko N.S. Selection of organizational and technological solutions for construction projects taking into account random factors. System technologies. 2018. No. 2 (27), pp. 64–68. (In Russian).
5. Khubaev A.O. Improving the production process of winter concreting based on the potential of organizational and technical solutions. Cand. Diss. (Engineering). Moscow. 2022. 165 p. (In Russian).
6. Gavrilov N.T. Prognozirovanie tekhniko-ekspluatatsionnogo sostoyaniya zdanii i sooruzhenii [Forecasting the technical and operational condition of buildings and structures]. Moscow: Makcenter. 2002. 203 p. (In Russian).
7. Rudenko А., Al-Msari А., Sarkisov S., Sui W. and Kuren-kova O. Multi-criteria simulation modeling of the construction supply schemes for areas with challenging climate. International Conference on Engineering Management of Communication and Technology (EMCTECH). Vienna. Austria. 2022, pp. 1–4. DOI: https://doi.org/10.1109/EMCTECH55220.2022.9934051
8. Fedosenko V.B., Theoretical and experimental studies of the efficiency of construction production in the conditions of the Far North. Doctor Diss. (Engineering). Moscow. 2005. 371 p. (In Russian).
9. Puzyrev A.M., Kozyreva L.V. Development of a methodology for assessing professional risks in construction. Bezopasnost’ tekhnogennykh i prirodnykh sistem. 2022. No. 1, pp. 9–17. (In Rissian). DOI: https://doi.org/10.23947/2541-9129-2022-1-9-17
10. Sergey Bolotin, Aldyn-kysDadar, KhenzigBiche-ool, Aslan Malsagov Generating a probabilistic construction schedule. Architecture and Engineering. 2020. No. 4. Vol. 5, pp. 44–50. (In Russian). DOI: https://doi.org/10.23968/2500-0055-2020-5-4-44-50
11. Fedosov S.V., Lapidus A.A., Petrukhin A.B., Narmaniya B.E. Organizational and technological principles of building condition monitoring at the stage of life cycle operation. Vestnik MSUCE. 2024. No. 19 (1), pp. 128–137. (In Russian). DOI: https://doi.org/10.22227/1997-0935.2024.1.128-137
12. Iskandarov D.Z., Borozdina S.M. Method of forecasting the efficiency of investment and construction projects realization in a special economic zone at different stages of life cycle. Vestnik MSUCE. 2023. No. 18 (8), pp. 1283–1297. (In Russian). DOI: https://doi.org/10.22227/1997-0935.2023.8.1283-1297
13. Malsagov A.R. Forecasting the construction work durationbased on the assessment of the current work schedule entropy. Vestnik Grazhdanskikh Inzhenerov. 2018. No. 4 (69), pp. 86–91. (In Russian). DOI: https://doi.org/10.23968/1999-5571-2018-15-4-86-91

For citation: Rudenko A.A., Kurenkova O.E. Regression analysis and modeling of the efficiency of construction and installation works in the conditions of the North. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 93–100. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-93-100

Designing a Cultural Heritage Object in a BIM Environment

Number of journal: 1-2-2024
Autors:

Mahov I.O.
Sergienko D.A.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-87-92
УДК: 721

 

AbstractAbout AuthorsReferences
Creating BIM models of individual structures and buildings as a whole makes it possible to better feel the geometric features of the designed object and understand its relationship with associated elements. Before starting the design, an analysis of the design object, the intended design solutions and the capabilities of various software systems was carried out. After studying the experience of domestic and foreign colleagues on the example of the reconstruction object, it was decided that it was necessary to use the Autodesk Revit software package. In the mode of one model, work was carried out on architectural and structural sections, as well as engineering networks. The need for a consistent approach in designing in a BIM environment is demonstrated. The stages of design are presented, the main functionality of the software package related to restoration work is demonstrated, and the characteristic problems arising during the design are identified and analyzed. Work experience shows the expediency of using the BIM environment during restoration work, which makes it possible to ensure the collaboration of participants in the design process. Detailed study at all stages of the design makes it possible to minimize labor costs, as well as eliminate errors associated with the complexity of the interconnection of sections, which is especially typical for a historical building.
I.O. MAHOV1, Deputy Director of NIIP (This email address is being protected from spambots. You need JavaScript enabled to view it.);
D.A. SERGIENKO2, Lecturer at the Department of Engineering Graphics and Computer Modeling

1 Scientific Research Institute of Design (26, bldg. 2, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Kuczyńska G., Stawska M. Modern applications of terrestrial laser scanning. Mining informational and analytical bulletin (scientific and technical journal). 2021. No. 1, pp. 160–169. DOI: 10.25018/0236-1493-2021-1-0-160-169
2. Muszyński Z., Rybak J., Kaczor P. Accuracy assessment of semi-automatic measuring techniques applied to displacement control in self-balanced pile capacity testing appliance. Sensors. 2018. No. 18, pp. 11. DOI: 10.3390/s18114067
3. Altyntsev M.A., Chernov A.V. Application of laser scanning technology for modeling of real estate objects in 3D cadaster. Geodesiya I Kartografiya. 2018. No. 9, pp. 52–63. (In Russian).
4. Pustovgar A.P., Zhongzhong Ch., Wensen Yu., Adam-tsevich A.O. Application of BIM-technology in the restoration of buildings. Promyshlennoe i grazhdanskoe stroitelstvo. 2020. No. 6, pp. 42–48. (In Russian). DOI: 10.33622/0869-7019.2020.06.42-48
5. Sheina S.G., Uspennikov D.K. Modern technologies, devices and equipment for three-dimensional modeling of architectural heritage monuments. Naukovedenie. 2015. No. 3. Vol. 7. (In Russian). DOI: 10.15862/103TVN315
6. Girya L.V., Trofimov G.P. Survey of architectural monuments using modern technologies of three-dimensional scanning. Vestnik of the Tomsk State National University of Architecture and Civil Engineering. 2022. No. 24 (6), pp. 35–48. (In Russian). DOI: 10.31675/1607-1859-2022-24-6-35-48
7. Maksimova S.V., Chekletsova I.A., Shamarina A.A. Architectural and construction survey of the Church of the Assumption of the Blessed Virgin Mary in Cherdyn using ground-based laser scanning. Architecture and Modern Information Technologies. 2019. No. 2 (47). С. 332–345. (In Russian).
8. Orlova Y.A. Laser scanning in construction as a part of BIM-technologies. Colloquium-journal. 2019. No. 18–3 (42), pp. 19–20. (In Russian).
9. Maurice Murphy, Eugene McGovern. Historic Building Information Modeling (HBIM). Structural Survey. 2009. No. 27 (4), pp. 311–327.
10. Angulo-Fornos R., Castellano-Román M. HBIM as support of preventive conservation actions in heritage architecture. Experience of the renaissance quadrant façade of the Cathedral of Seville. Applied Sciences. 2020. No. 10 (7), pp. 2428. DOI:10.3390/10072428
11. Golovina E.S., Laskin A.S., Nikiforov M.V., Mashkovtsev E.A., Bulanov P.A. Application of laser scanning technology at capital construction facilities. Neftianoye hozyaistvo. 2019. No. 11, pp. 43–45. (In Russian). DOI: 10.24887/0028-2448-2019-11-43-45
12. Rodriguez-Moreno C., Reynoso-Gordo J.F., Rivas-Lopez E., Gomez-Blanco A., Ariza-Lopez F.J. From Point Cloud to BIM: An Integrated Workflow for Architectural Heritage Documentation, Research and Modeling. Survey Review. 2016. No. 50 (360), pp. 1–20. DOI: 10.1080/00396265.2016.1259719
13. Javier Farratell, Manuel Buzas Cavada, Juan Enrique Nieto-Julian, Juan Moyano. Collaborative workflow in the HBIM project for the restoration and preservation of cultural heritage. International Journal of Architectural Heritage. 2022. June. DOI:10.1080/15583058.2022.2073294
14. Fedorov S.S. Principles of creating models and technologies of high-quality design of construction objects. Stroitelstvo i reconstruktsia. 2018. No. 6 (80), pp. 94–101. (In Russian).
15. Kozlova T. I. Information model of an immovable object of cultural heritage as a new tool in museification practice. Vestnik of Tomsk State University. History. 2013. No. 3 (23), pp. 33–37. (In Russian).
16. Szwarkowski D., Moska M. Assessment of deformations in mining areas using the riegl VZ-400 terrestrial laser scanner. E3S Web of Conferences. 2018. No. 02009, pp. 30. DOI: 10.1051/e3sconf/20183602009
17. Zhang Guanying. BIM technology and modeling system dowgung for ancient Chinese architectural monuments. Vestnik of Tomsk State University. History. 2014. No. 1 (13), pp. 44–55. (In Russian).
18. Anikeeva S.O. On the experience of using BIM technology for museification of wooden architectural monuments. Bulletin of Tomsk State University. Kulturology and Art History. 2014. No. 1 (13), pp. 31–36. (In Russian).
19. Makhova N.B., Makhov I.O. Mathematical approach in the design of port infrastructure objects in VIM-environment. Rechnoy transport. 2021. № 1 (97). C. 46–48. (In Russian).

For citation: Mahov I.O. Sergienko D.A. Designing a cultural heritage object in a BIM environment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2024. No. 1–2, pp. 87–92. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-87-92

Problems and Tasks of Building a Digital Information Model of Buildings for the Implementation of Housing Capital Repair Programs

Number of journal: 1-2-2024
Autors:

Popova O.N.,
Zaostrovskaya A.S.,
Yudina A.F.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-80-86
УДК: 721

 

AbstractAbout AuthorsReferences
The purpose of the work is the development and use of digital information models (DIM) of apartment buildings (AB) of standard series of the Soviet period of construction at the stage of operation of the building. The stages and recommendations for the development of standard design DIM AB, requirements for the level of elaboration (detailing) of models are presented. The most common series of ABs in the central part of Arkhangelsk have been identified. With the help of Renga software, models have been developed for 4 standard series of AB. The level of elaboration is determined, on the one hand, by the possibility of using the model as an operational one without modification, on the other hand, by the possibility of refining it by increasing the level of detailing of the elements.
O.N. POPOVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. ZAOSTROVSKAYA1, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.F. YUDINA2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnaya Dvina Emb., Arkhangelsk, 163002, Russian Federation)
2 Saint-Petersburg Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg, 190005, Russian Federation)

1. Овсянникова Т.Ю., Пацуков А.А. Технологии информационного моделирования: стратегические задачи и реалии цифровой трансформации в строительстве // Недвижимость: экономика, управление. 2022. № 1. С. 13–18. DOI: https://doi.org/10.22337/2073-8412-2022-1-13-18
1. Ovsyannikova T.Y., Patsukov A.A. Information modeling technologies: strategic tasks and realities of digital transformation in construction. Nedvizhimost, economika, upravlenie. 2022. No. 1, pp. 13–18. (In Russian). DOI: https://doi.org/10.22337/2073-8412-2022-1-13-18
2. Перцева А.Е., Волкова А.А., Хижняк Н.С., Астафьева Н.С. Особенности внедрения BIM-технологии в отечественные организации // Науковедение. 2017. Т. 9. № 6. C. 1–8.
2. Pertseva A.E., Volkova A.A., Khizhnyak N.S., Astafie-va N.S. Features of BIM-technology implementation in domestic organizations. Naukovedenie. 2017. Vol. 9. Nо. 6, pp. 1–8. (In Russian).
3. Лосев К.Ю., Лосев Ю.Г. К методологии автоматизации жизненного цикла зданий и сооружений // Вестник Евразийской науки. 2022. Т. 14. № 1. C. 1–13.
3. Losev K.Yu., Losev Yu.G. To the methodology of automation of the life cycle of buildings and structures. Vestnik Eurasiiskoy nauki. 2022. Vol. 14. No. 1, pp. 1–13. (In Russian).
4. Грахов В.Л., Кислякова Ю.Г., Мохначев С.А., Симаков Н.К. Экономические аспекты внедрения цифрового двойника здания на стадии эксплуатации // Вестник института мировых цивилизаций. 2021. Т. 12. № 4. C. 39–45.
4. Grakhov V.L., Kislyakova Y.G., Mokhnachev S.A., Simakov N.K. Economic aspects of implementing a digital twin of the building at the operation stage. Vestnik of the Institute of World Civilizations. 2021. Vol. 12. No. 4, pp. 39–45. (In Russian).
5. Andreani Marta et al. 7d BIM for sustainability assessment in design processes: a case study of design of alternatives in severe climate and heavy use conditions. Architecture and Engineering. 2019. Vol. 4. No. 2, pp. 3–12. DOI: https://doi.org/10.23968/2500-0055-2019-4-2-3-12
6. Bai, Qinghan et al. Application of BIM in the creation of prefabricated structures local parameterized component database. Architecture and Engineering. 2019. Vol. 4. No. 2, pp. 13–21. DOI: https://doi.org/10.23968/2500-0055-2019-4-2-13-21
7. Bakhareva Olga; Kordonchik David. Investments in preservation and development of regional cultural heritage: a library of BIM elements representing national architectural and urban-planning landmarks. Architecture and Engineering. 2019. Vol. 4. No. 3, pp. 39–48. DOI: https://doi.org/10.23968/2500-0055-2019-4-3-39-48
8. Shekhar Darshini; GODIHAL Jagdish. Evaluation of energy-cost-efficient design alternatives for residential buildings in karnataka’s tropical wet and dry climatic zones. Architecture and Engineering. 2023. Vol. 8. No. 3, pp. 23–31. DOI: 10.23968/2500-0055-2023-8-3-23-31
9. Гулик В.Ю. Перспективы внедрения BIM-технологий // Архитектура, строительство, транспорт. 2021. № 2. C. 58–63.
9. Gulik V.Yu. Prospects of BIM-technologies implementation. Architectura, stroitelstvo, transport. 2021. No. 2, pp. 58–63. (In Russian).
10. Бейсембаева С.А., Калмагамбетова А.Ш., Туралыкова Б.С. Применения BIM-технологий на стадии эксплуатации в зданиях // Эпоха науки. 2021. № 25. C. 52–55.
10. Beisembaeva S.A., Kalmagambetova A.Sh., Turalykova B.S. Applications of BIM-technologies at the stage of operation in buildings. Epocha nauki. 2021. No. 25, pp. 52–55. (In Russian).
11. Шутова М.Н., Плахутина А.А., Кужелева В.А. Применение BIM-технологий при разработке архитектурных, конструктивных и организационно-технологических решений промышленного здания // Строительство и архитектура. 2021. № 4. C. 71–75.
11. Shutova M.N., Plakhutina А.A., Kuzheleva V.A. Application of BIM-technologies in the development of architectural, structural and organizational-technological solutions of an industrial building. Stroitelstvo i architectura. 2021. No. 4, pp. 71–75. (In Russian).
12. Рашев В.С., Астафьева Н.С., Рогожкин Л.С., Григорьев В.Ю. Анализ внедрения технологии информационного моделирования в российских строительных компаниях по проектированию и строительству инженерных систем // Вестник Евразийской науки. 2020. № 3. C. 1–15.
12. Rashev V.S., Astafieva N.S., Rogozhkin L.S., Grigoriev V.Y. Analysis of the implementation of information modeling technology in Russian construction companies for the design and construction of engineering systems. Vestnik Evraziyskoy nauki. 2020. No. 3, pp. 1–15. (In Russian).
13. Теличенко В.И., Лапидус А.А., Морозенко А.А. Информационное моделирование технологий и бизнес-процессов в строительстве. М.: АСВ, 2008. 144 c.
13. Telichenko V.I., Lapidus A.A., Morozenko A.A. Informatsionnoe modelirovanie tekhnologii i biznes-protsessov v stroitel’stve [Information modeling of technologies and business processes in construction]. Moscow: ASV. 2008. 144 p.
14. Шеина С.Г., Шуйков С.Л. Нормативное регулирование и опыт внедрения BIM на различных этапах жизненного цикла в России // Современные тенденции в строительстве, градостроительстве и планировке территорий. 2023. Т. 2. No. 1. C. 4–11.
14. Sheina S.G., Shuikov S.L. Normative regulation and experience of BIM implementation at different stages of life cycle in Russia. Modern trends in construction, urban planning and land use planning. 2023. Vol. 2. No. 1, pp. 4–11. (In Russian).
15. Кузнецов С.В., Князева Н.В. Применение информационного моделирования для решения задач технического обслуживания и ремонта зданий и сооружений // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2023. № 3. C. 34–45.
15. Kuznetsov S.V., Knyazeva N.V. Application of information modeling for solving problems of maintenance and repair of buildings and structures. Vestnik of Belgorod State Technological University named after V.G. Shukhov. 2023. No. 3, pp. 34–45. (In Russian).
16. Бурчик В.В., Кузьмич Н.П. Организация обследования зданий и сооружений для дальнейшего их использования // Вестник гражданских инженеров. 2023. № 3 (98). C. 54–60. (In Russian). DOI: 10.23968/1999-5571-2022-19-3-171-177
16. Burchik V.V., Kuzmich N.P. Organization of the survey of buildings and structures for their further use. Vestnik grazhdanskih engenerov. 2023. No. 3 (98), pp. 54–60. (In Russian). DOI: 10.23968/1999-5571-2022-19-3-171-177

For citation: Popova O.N., Zaostrovskaya A.S., Yudina A.F. Problems and tasks of building a digital information model of buildings for the implementation of housing capital repair programs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 80–86. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-80-86

Organization of the Process of Complex BIM-Design of Technological Facilities

Number of journal: 1-2-2024
Autors:

Zatorskiy S.P.,
Shumilov K.A.,
Semenov A.A.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-72-79
УДК: 721

 

AbstractAbout AuthorsReferences
The article deals with the issues of optimization of complex BIM-design processes of capital construction objects on the example of design of technological objects, namely buildings and facilities of water treatment complex. The model of organization of BIM-designing processes (construction of information model and obtaining documentation of various stages of design) with the help of interactive interaction means is presented, which allows to reduce time costs for information exchange and coordination of design decisions. A brief algorithm of this organizational model is given. Further possibilities of refinement and construction of new algorithms of work with the use of software complexes and programming elements are revealed. The results obtained in the systematization of individual stages of information modeling are demonstrated.
S.P. ZATORSKIY, post-graduate (This email address is being protected from spambots. You need JavaScript enabled to view it.),
K.A. SHUMILOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.A. SEMENOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg Petersburg State University of Architecture and Civil Engineering(4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)

1. Andreani M., Bertagni S., Biagini C., Mallo F. 7D BIM for sustainability assessment in design processes: a case study of design of alternatives in severe climate and heavy use conditions. Architecture and Engineering. 2019. Vol. 4, No. 2, pp. 3–12. DOI: 10.23968/2500-0055-2019-4-2-3-12. EDN: YYNSQL
2. Черных А.Г., Нижегородцев Д.В., Кубасевич А.Е., Цыгановкин В.В. Проектирование и расчет строительных конструкций с применением технологий информационного моделирования // Вестник гражданских инженеров. 2020. № 3 (80). С. 72–78. DOI: 10.23968/1999-5571-2020-17-3-72-78. EDN: OQBEFB
2. Chernykh A.G., Nizhegorodtsev D.V., Kubasevich A.E. Design and calculation of building structures using BIM technologies. Vestnik grazhdanskikh inzhenerov. 2020. No. 3 (80), pp. 72–78. (In Russian). DOI: 10.23968/1999-5571-2020-17-3-72-78. EDN: OQBEFB
3. Чурбанов А.Е., Шамара Ю.А. Влияние технологии информационного моделирования на развитие инвестиционно-строительного процесса // Вестник МГСУ. 2018. Т. 13. № 7 (118). С. 824–835. DOI: 10.22227/1997-0935.2018.7.824-835. EDN: XUWKPR
3. Churbanov A.E., Shamara Yu.A. The impact of information modelling technology on the development of investment-construction process. Vestnik MSUCE. 2018. Vol. 13. No. 7 (118), pp. 824–835. (In Russian). DOI: 10.22227/1997-0935.2018.7.824-835. EDN: XUWKPR
4. Bezkorovayniy V., Bayazitov V., Bobov D. Management of the design and construction of offshore oil and gas facilities with BIM base. IOP Conference Series: Materials Science and Engineering. 2018. Vol. 463, pp. 042056. DOI: 10.1088/1757-899X/463/4/042056. EDN: QZJDZO
5. Гусакова Е.А., Овчинников А.Н. Перспективы моделирования жизненного цикла объекта капитального строительства информационными потоками. Вестник МГСУ. 2020. Вып. 5. № 8. С. 1191–1200. DOI: 10.22227/1997-0935.2020.8.1191-1200. EDN: BBAAAZ
5. Gusakova E., Ovchinnikov A. Prospects for the life cycle modeling of a capital construction facility using information flows. Vestnik MSUCE. 2020. Vol. 15, pp. 1191–1200. DOI: 10.22227/1997-0935.2020.8.1191-1200. EDN: BBAAAZ
6. Милкина Ю.А., Макарова Е.Е. Внедрение современных информационных технологий в строительную отрасль // Организатор производства. 2021. Т. 29. № 3. С. 101–110. DOI: 10.36622/VSTU.2021.66.40.010. EDN: FGCCDR
6. Milkina Yu.A., Makarova E.E. Introduction of modern information technologies in the construction industry. Organizator proizvodstva. 2021. Vol. 29. No. 3, pp. 101–110. (In Russian). DOI: 10.36622/VSTU.2021.66.40.010. EDN: FGCCDR
7. Пацуков А.А. Перспективы применения технологий информационного моделирования в строительстве. Инвестиции, градостроительство, недвижимость как драйверы социально-экономического развития территории и повышения качества жизни населения: Материалы XII Междунар. научно-практ. конф. Ч. 1. Томск: ТГАСУ, 2022. С. 205–210. EDN: HBLTWV
7. Patsukov A.A. Prospects for the use of information modeling technologies in construction. Investments, urban planning, real estate as drivers of socio-economic development of the territory and improving the quality of life of the population: material. XII International scientific-practical conf. Part 1. Tomsk: TGASU. 2022, pp. 205–210. (In Russian). EDN: HBLTWV
8. Kravchenko O., Khoruzhy V., Lyubenko V., Nedashkovsky I. BIM technologies in engineering network design. Problems of Water Supply, Sewerage and Hydraulic. 2023, pp. 29–34. DOI: 10.32347/2524-0021.2023.42.29-34
9. Kisel T., Mishlanova M. Research of the problems of BIM technologies implementation in the investment-and-construction projects of the Russian companies. E3S Web of Conferences. 2022. Vol. 363. P. 02044. DOI: 10.1051/e3sconf/202236302044
10. Назарчева Е.В. Разработка стратегии развития инновационной деятельности предприятия ООО «Дарс-Инжиниринг» с применением BIM-технологий // Экономика и бизнес: теория и практика. 2022. № 12–2 (94). С. 51–57. DOI: 10.24412/2411-0450-2022-12-2-51-57. EDN: AELCTW
10. Nazarcheva E.V. Development of a Strategic Project for the Implementation of BIM-Technologies in the Activities of the Enterprise LLC «Dars-Engineering». Economika i biznes: theoriya i practika. 2022. No. 12–2 (94), pp. 51–57. (In Russian). DOI: 10.24412/2411-0450-2022-12-2-51-57. EDN: AELCTW
11. Khan M.I., Khattak A.A., Khan J.A. Investigating the impact of project planning on project success: a case of construction industry. Competitive Social Science Research Journal. 2021. Vol. 2. No. 4, pp. 99–109.
12. Pellerin R., Perrier N. A review of methods, techniques and tools for project planning and control. International Journal of Production Research. 2019. Vol. 57 (7), pp. 2160–2178. DOI: 10.1080/00207543.2018.1524168
13. Yahya M., Amer W. Building information modelling (BIM) applications in the construction sector to improve project planning facilities. Diyala Journal of Engineering Sciences. 2023. Vol. 16, pp. 124–133. DOI: 10.24237/djes.2023.16310
14. Понявина Н.А., Попова М.Е., Захве Х. Усовершенствование методов управления жизненным циклом строительного объекта на основе использования информационных технологий // Строительство и недвижимость. 2021. № 1 (8). С. 192–196.EDN: MIXCXA
14. Ponyavina N.A., Popova M.E., Zakhve Kh. Improvement of methods for managing the life cycle of a construction object based on the use of information technologies. Stroitelstvo i nedvizhimost. 2021. No. 1 (8), pp. 192–196. (In Russian). EDN: MIXCXA
15. Jiao Y., Cao P. Research on optimization of project design management process based on BIM. Buildings. 2023. Vol. 13, pp. 2139. DOI: 10.3390/buildings13092139
16. Гришина Н.М., Мицко Д.И. Разработка и внедрение BIM-стандарта: исследование методов управления в строительстве // Известия КГАСУ. 2017. № 3 (41). С. 266–276. EDN: ZHJPNP
16. Grishina N.M., Mitsko D.I. Development and implementation of a BIM standard: a study of management methods in construction. Izvestiya of the KSACU. 2017. No. 3 (41), pp. 266–276. (In Russian). EDN: ZHJPNP

For citation: Zatorskiy S.P., Shumilov K.A., Semenov A.A. Organization of the process of complex BIM-design of technological facilities. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2024. No. 1–2, pp. 72–79. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-72-79

The Original Appearance of the Kazan Church in the City of Ustyuzhna

Number of journal: 1-2-2024
Autors:

Gorshkov A.G.,
Lisovskiy V.G.,
Pukharenko Yu.V.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-67-71
УДК: 72.03

 

AbstractAbout AuthorsReferences
Comprehensive scientific research has been carried out, including laser scanning of the attic space of the Kazan Church in Ustyuzhna (Vologda region), which has much in common with the Smolensk Church in the village of Gordeevka in Nizhny Novgorod, where, among other things, traces of the original decoration of the facades of the church before the rebuilding of the XIX century were found. In the course of field studies in 2023, it was possible to confirm the presence of an internal brick staircase embedded in the ground floor level to an unfinished (but originally intended for construction) bell tower. Illustrations of decorative elements of the facades, now hidden from view and located in the attic space, are presented. Comparison with domestic and foreign trends of the late 17th century and particular features of the construction of the «Stroganov» churches makes it possible to attribute the architectural monument in question to the galaxy of churches built by Grigory Dmitrievich Stroganov in the context of the experience of using the order system in Russian church architecture. Based on the given set of features, a conclusion is made about the initial finishing of the facades. Similar to the Smolensk Church, the original surface of the walls of the Kazan Church was, in all likelihood, unplastered chain brickwork with lime-sand grouting.
A.G. GORSHKOV1, Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. LISOVSKIY2, Doctor of Art History, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
Yu.V. PUKHARENKO1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint-Petersburg Petersburg State University of Architecture and Civil Engineering(4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)
2 St. Petersburg Ilya Repin Academy of Arts (17, Universitetskaya Emb., Saint Petersburg, 199034, Russian Federation)

1. Куликов А.Ю. Явление иконы Божией Матери в Казани и храм, посвященный этому событию, в Устюжне // Устюжна: Краеведческий альманах. Вологда, 2012. Вып. 1–2. С. 47–52.
1. Kulikov A.Yu. The appearance of the icon of the Mother of God in Kazan and the temple dedicated to this event in Ustyuzhna. Ustyuzhna: kraevedcheskiy almanah. Vologda. 2012. Vol. 1–2, pp. 47–52. (In Russian).
2. Воротынцева Е.А. Легенда об основании Казанского храма Устюжны и ее исторические реалии // Устюжна: Краеведческий альманах. Вологда. 2012. Вып. 7. С. 36–56.
2. Vorotyntseva E.A. The legend of the founding of the Kazan Church of Ustyuzhna and its historical realities. Ustyuzhna: kraevedcheskiy almanah. Vologda. 2012. Vol. 7. pp. 36–56. (In Russian).
3. Рыбаков А.А. Фрески Казанской церкви в Устюжне // Устюжна: Историко-литературный альманах. Вологда. 1993. Вып. 2. С. 262–278.
3. Rybakov A.A. Frescoes of the Kazan Church in Ustyuzhna. Ustyuzhna: istoricо-literaturnuy almanah. Vologda. 1993. Vol. 2, pp. 262–278. (In Russian)
4. Куликов А.Ю. Явление иконы Божией Матери в Казани и храм, посвященный этому событию, в Устюжне // Устюжна: Историко-литературный альманах. Вологда. 1992. Вып. 1. С. 40–45.
4. Kulikov A.Yu. The appearance of the icon of the Mother of God in Kazan and the temple dedicated to this event in Ustyuzhna. Ustyuzhna: istoricо-literaturnuy almanah. Vologda. 1992. Vol. 1,pp. 40–45. (In Russian).
5. Cennamo Claudia, Cusano Concetta. The «baroque skyline» in naples. structural studies on 16th and 17th century domes in terms of form and stability Architecture and Engineering. 2020. Vol. 5. Iss. 2,pp. 13.
6. Инчик В.В. Производство кирпича и строительство в Московском государстве в XVI–XVII вв. // Вестник гражданских инженеров. 2006. № 3 (8). С. 112–118.
6. Inchik V.V. Brick production and construction inthe Moscow state in the 16th–17th centuries. Vestnik grazgdanskih ingenerov. 2006. No. 3 (8),pp. 112–118. (In Russian).
7. Котляр В.Д., Пищулина В.В., Попов Ю.В., Талпа Б.В. Микроструктурные изменения в известковых растворах древних кирпичных кладок // Строительные материалы. 2021. № 4. С. 47–53. DOI: https://doi.org/10.31659/0585-430X-2021-790-4-47-53
7. Kotlyar V.D., Pishchulina V.V., Popov Yu.V., Talpa B.V. Microstructural changes in lime mortars of ancient brick masonries. Stroitel’nye Materialy [Construction Materials]. 2021. No. 4, pp. 47–53. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2021-790-4-47-53

For citation: Gorshkov A.G., Lisovskiy V.G., Pukharenko Yu.V. The original appearance of the Kazan Church in the city of Ustyuzhna. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2024. No. 1–2, pp. 67–71. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-67-71

Features of the Column Order of the Facades of Buildings in St. Petersburg at the Beginning of the XX Century

Number of journal: 1-2-2024
Autors:

Voznyak E.R.,
Kolesova M.A.,
Pukharenko Yu.V.,
Lisovskiy V.G.

DOI: https://doi.org/10.31659/0044-4472-2024-1-2-63-66
УДК: 72.03

 

AbstractAbout AuthorsReferences
The order of the Saint Petersburg building facades has changed throughout the history of the city’s architecture. The order again acquired a dominant role in the compositional structure of the neoclassical building facades of the beginning of 20th century, but the order of this time is transformed in comparison with previous historical periods. Analysis of the use of the column order by architects V.A. Shchuko and M.S. Lyalevich makes it possible to identify main features of the order of the early 20th century: placement in the structure of the facade, proportions, detailing; discover the use of historical prototypes and the attitude of architects to classical theory. The study of all these features is necessary when researching, preserving and restoring numerous buildings in the neoclassical style of the early 20th century.
E.R. VOZNYAK1, Doctor of Architecture, Docent (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. KOLESOVA1, Assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.V. PUKHARENKO1, Doctor of Sciences (Engineering), Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. LISOVSKIY2, Doctor of Art History, Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Saint-Petersburg Petersburg State University of Architecture and Civil Engineering (4, 2nd Krasnoarmeyskaya Street, Saint Petersburg 190005, Russian Federation)
2 St. Petersburg Academy of Arts named after Ilya Repin (17, Universitetskaya Emb., Saint Petersburg, 199034, Russian Federation)

1. Vignola G.B. Pravilo pyati orderov arkhitektury [The Five Orders of Architecture]. Moscow: Izd. Vses. Ak. arkhitektury, 1938.
2. Voznyak E.R. Arkhitekturnye detali fasadov Sankt-Peterburga. XVIII vek [Architectural details of the facades of St. Petersburg. XVIII century]. Saint Petersburg: Kriga, 2023. 438 p.
3. Voznyak E.R. Compositional structure of the facades of buildings in the XVIII century and its projection in the architectural and urban environment of Saint Petersburg. Vestnik grazhdanskikh inzhenerov. 2017. No. 4 (63), pp. 55–60. (In Russian). DOI: https://doi.org/10.23968/1999-5571-2017-14-4-55-60
4. Goryunov V.S., Tubli M.P. Arkhitektura epokhi moderna [Architecture of the Modern era]. Saint Petersburg: Palazzo, 2013. 360 p.
5. Isachenko V.G. Zodchie Sankt-Peterburga. XIX – nachalo XX veka [Architects of Saint Petersburg. XIX – early XX century]. Saint Petersburg: Lenizdat, 2000. 1070 p.
6. Kirikov B.M. Arkhitektura Peterburga kontsa XIX – nachala XX veka: Eklektika. Modern. Neoklassitsizm [Architecture of Saint Petersburg at the end of the 19th – beginning of the 20th century: Eclecticism. Modern. Neoclassicism]. Saint Petersburg: Kolo, 2006.
7. Lisovskiy V.G. Tri veka arkhitektury Sankt-Peterburga. Kniga vtoraya. Ot klassiki k modern [Three centuries of architecture in Saint Petersburg. Book two. From classic to modern]. Saint Petersburg: Kolo, 2022. 447 p.
8. Palladio A. Chetyre knigi ob arkhitekture [The Four Books of Architecture]. Moscow: AST. 2021. 569 p.
9. Pilyavskiy V.I. Istoriya russkoi arkhitektury [History of Russian architecture]. Leningrad: Stroiizdat, 1984. 512 p.
10. Punin A.L. Arkhitektura Peterburga serediny i vtoroi poloviny XIX veka: v 3-kh t [Architecture of Saint Petersburg in the middle and second half of the 19th century]. Saint Petersburg: Kriga, 2019. 592 p.
11. Lavrov L., Perov F. The phenomenon of the Saint Petersburg variant of the regular city. Architecture and Engineering. 2016. Vol. 1, No. 1, pp. 31–39.

For citation: Voznyak E.R., Kolesova M.A., Pukharenko Yu.V., Lisovskiy V.G. Features of the column order of the facades of buildings in St. Petersburg at the beginning of the XX century. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 1–2, pp. 63–66. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2024-1-2-63-66

https://www.traditionrolex.com/11