Dependence of the Microclimate Parameters at the Boundary of the Room Serviced Area on the Size of the Window

Number of journal: 8-2022
Autors:

Malyavina E.G.,
Landyrev S.S.

DOI: https://doi.org/10.31659/0044-4472-2022-8-44-52
УДК: 628.8

 

AbstractAbout AuthorsReferences
The values of the radiation temperature and the local asymmetry of the radiation temperature in the premises of buildings with respect to the ball thermometer were estimated by mathematical modeling of the process of radiant heat exchange of each inner surface with a ball thermometer. The ordinary rooms of the intermediate floor of medical and preventive, preschool institutions and residential boarding schools in Belgorod with an estimated outdoor temperature of -240C in the cold period of the year are considered. The aim of the work was to find out the influence of the window size in the rooms with a heating facility on the above microclimate parameters. Windows with standard resistance to heat transfer were taken for consideration, the height of which varied from 1.3 m to 2.3 m, and the width from 0.8 m to 3.8 m. The calculation results show that in the design winter conditions, the optimal requirements of GOST for radiation temperature are often not met. The requirements for local asymmetry of radiation temperature are also not met. The heating facility, in comparison with the air heating, noticeably raises the radiation temperature both at a height of 0.4 m from the floor opposite the heating device and at a height of 1.7 m opposite the window.
E.G. MALYAVINA, Professor, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.S. LANDYREV, post graduate student (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Moscow State University of Civil Engineering (26, Yaroslavskoe shosse, Moscow, 129337, Russian Federation)

1. Aparicio P., Salmeron J., Ruiz F., Sanchez J., Brotas L. The globe thermometer in comfort and environmental studies in buildings. Revista de la construccion. 2016. No. 15, pp. 57–66. DOI: http://dx.doi.org/10.4067/S0718-915X2016000300006
2. Malyavina E.G., Frolova A.A., Landyrev S.S. Microclimate parameters evaluation for spaces with windows of different thermal protection. Light & Engineering. 2021. No. 29 (5), pp. 61–67. DOI: 10.33383/2021-078
3. Малявина Е.Г., Барсукова М.А. Разработка методики расчета локальной асимметрии радиационной температуры // Научное обозрение. 2015. № 8. С. 38–41.
3. Malyavina E.G., Barsukova M.A. Development of the method of calculating the local asymmetry of radiation temperature. Science review. 2015. No. 8, pp. 38–41. (In Russian).
4. Musy M., Malys L., Morille B., Inard C. The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Climate. 2015. No. 14 (2), pp. 213–223. DOI: https://doi.org/10.1016/j.uclim.2015.07.004
5. Zhang L., Xiaoling Y., Lv Q., Cao F., Wang X. Study of transient indoor temperature for a HVAC room using a modified CFD method. Energy Procedia. 2019. No. 160, pp. 420–427. DOI: https://doi.org/10.1016/j.egypro.2019.02.176
6. Старкова Л.Г., Морева Ю.А., Новоселова Ю.Н. Оптимизация микроклимата в православном храме методом моделирования воздушных потоков // Вестник ЮУрГУ. Сер. Строительство и архитектура. 2018. № 18 (3). С. 53–59. DOI: 10.14529/build180308
6. Starkova L.G., Moreva Yu.A., Novoselova Yu.N. Optimization of the microclimate in an Orthodox church by modeling air flows. Vestnik of the South Ural State University. The series «Construction and Architecture». 2018. Vol. 18. No. 3, pp. 53–59. (In Russian). DOI: 10.14529/build180308
7. De Luca F., Naboni E., Lobaccaro G. Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy. Energy and buildings. 2021. No. 238, 110831. DOI: https://doi.org/10.1016/j.enbuild.2021.110831
8. Teitelbaum E., Meggers F. Expanded psychrometric landscapes for radiant cooling and natural ventilation system design and optimization. Energy Procedia. 2017. No. 122, pp. 1129–1134. DOI: https://doi.org/10.1016/j.egypro.2017.07.436
9. Cannistraro M., Trancossi M. Enhancement of indoor comfort in the presence of large glazed radiant surfaces by a local heat pump system based on Peltier cells. Thermal science and engineering progress. 2019. No. 14, 100388. DOI: https://doi.org/10.1016/j.tsep.2019.100388
10. Vorre M., Jensen R., Dreau J. Radiation exchange between persons and surfaces for building energy simulations. Energy and buildings. 2015. No. 101, pp. 110–121. DOI: https://doi.org/10.1016/j.enbuild.2015.05.005
11. Zhang S., Zhu N., Lv S. Human response and productivity in hot environments with directed thermal radiation. Building and environment. 2021. No. 187, 107408. DOI: https://doi.org/10.1016/j.buildenv.2020.107408
12. Forouzandeh A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model. Sustainable Cities and Society. 2021. No. 70, 102878. DOI: https://doi.org/10.1016/j.scs.2021.102878
13. Малявина Е.Г., Фролова А.А., Ландырев С.С. Распределение локальной асимметрии результирующей температуры по помещению // Сантехника, отопление, кондиционирование. 2021. № 10. С. 36–39.
13. Malyavina E.G, Frolova A.A, Landyrev S.S. Distribution the local asymmetry of resultant temperature on the premise. Santehnika, otoplenie, kondicionirovanie (SOK). 2021. No. 10, pp. 36–39. (In Russian).
14. Малявина Е.Г., Ландырев С.С. Проверка выполнения требований ГОСТ 30494–2011 к параметрам внутренней среды на границе обслуживаемой зоны // АВОК. 2022. № 2. С. 40–42.
14. Malyavina E.G., Landyrev S.S. Checking for compliance with GOST 30494–2011 requirements for indoor environment parameters at the serviced zone border. АВОК. 2022. No. 2, pp. 40–42. (In Russian).
15. Shao S., Zhang H., Jiang L., You Sh., Zheng W. Numerical investigation and thermal analysis of a refrigerant-heated radiator heating system coupled with air source heat pump. Energy Procedia. 2019. No. 158, pp. 2158–2163. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115748
16. Dudzinska A., Kotowicz A. Features of materials versus thermal comfort in a passive building. Procedia Engineering. 2015. No. 108, pp. 108–115. DOI: https://doi.org/10.1016/j.proeng.2015.06.125
17. Malz S., Steininger P., Steffens O. On the development of a building insulation using air layers with highly reflective interfaces. Energy and buildings. 2021. No. 236, 110779. DOI: https://doi.org/10.1016/j.enbuild.2021.110779
18. Berardi U., Kisilewicz T., Kim S., Lechowska A., Paulos Ja., Schnotale Ja. Experimental and numerical investigation of the thermal transmittance of PVC window frames with silica aerogel. Journal of Building Engineering. 2020. No. 32, 101665. DOI: https://doi.org/10.1016/j.jobe.2020.101665
19. Fontana L. Experimental study on the globe thermometer behaviour in conditions of asymmetry of the radiant temperature. Applied Thermal Engineering. 2010. No. 30, lss. 6–7, pp. 732–740. DOI: https://doi.org/10.1016/j.applthermaleng.2009.12.003
20. Малявина Е.Г., Ландырев С.С. Расчет локальной асимметрии результирующей температуры на границе обслуживаемой зоны помещений в различных городах РФ // Известия вузов. Строительство. 2021. № 7. С. 82–92. DOI 10.32683/0536-1052-2021-751-7-82-92
20. Malyavina E.G., Landyrev S.S. Сalculation of the local asymmetry of the resulting temperature at the boundary of the room serviced area in various cities of the Russian Federation. Izvestiya vuzov. Stroitel’stvo. 2021. No. 7, pp. 82–92. (In Russian). DOI: 10.32683/0536-1052-2021-751-7-82-92

For citation: Malyavina E.G., Landyrev S.S. Dependence of the microclimate parameters at the boundary of the serviced area of the room on the size of the window. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 8, pp. 44–52. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-8-44-52


Print   Email