Зависимость параметров микроклимата на границе обслуживаемой зоны помещения от размеров окна

Журнал: №8-2022
Авторы:

Малявина Е.Г.,
Ландырев С.С.

DOI: https://doi.org/10.31659/0044-4472-2022-8-44-52
УДК: 628.8

 

АннотацияОб авторахСписок литературы
Оценка величин радиационной температуры и локальной асимметрии радиационной температуры в помещениях зданий по отношению к шаровому термометру выполнялась путем математического моделирования процесса лучистого теплообмена каждой внутренней поверхности с шаровым термометром. Рассмотрены рядовые помещения промежуточного этажа лечебно-профилактических, детских дошкольных учреждений и жилых комнат интернатов в г. Белгороде с расчетной температурой наружного воздуха в холодный период года -24оС. Цель работы – выяснение влияния на указанные выше параметры микроклимата размеров окон в помещениях с приборным отоплением. К рассмотрению приняты окна с нормативным сопротивлением теплопередаче, высота которых изменялась от 1,3 до 2,3 м, а ширина от 0,8 до 3,8 м. Результаты расчетов свидетельствуют о том, что в расчетных зимних условиях оптимальные требования ГОСТа к радиационной температуре часто не выполняются. Не выполняются также требования к локальной асимметрии радиационной температуры. Отопительный прибор по сравнению с воздушным отоплением заметно поднимает радиационную температуру и на высоте 0,4 м от пола напротив отопительного прибора, и на высоте 1,7 м напротив окна.
Е.Г. МАЛЯВИНА, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
С.С. ЛАНДЫРЕВ, аспирант (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Московский государственный строительный университет (129337, Москва, Ярославское ш., 26)

1. Aparicio P., Salmeron J., Ruiz F., Sanchez J., Brotas L. The globe thermometer in comfort and environmental studies in buildings. Revista de la construccion. 2016. No. 15, pp. 57–66. DOI: http://dx.doi.org/10.4067/S0718-915X2016000300006
2. Malyavina E.G., Frolova A.A., Landyrev S.S. Microclimate parameters evaluation for spaces with windows of different thermal protection. Light & Engineering. 2021. No. 29 (5), pp. 61–67. DOI: 10.33383/2021-078
3. Малявина Е.Г., Барсукова М.А. Разработка методики расчета локальной асимметрии радиационной температуры // Научное обозрение. 2015. № 8. С. 38–41.
3. Malyavina E.G., Barsukova M.A. Development of the method of calculating the local asymmetry of radiation temperature. Science review. 2015. No. 8, pp. 38–41. (In Russian).
4. Musy M., Malys L., Morille B., Inard C. The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Climate. 2015. No. 14 (2), pp. 213–223. DOI: https://doi.org/10.1016/j.uclim.2015.07.004
5. Zhang L., Xiaoling Y., Lv Q., Cao F., Wang X. Study of transient indoor temperature for a HVAC room using a modified CFD method. Energy Procedia. 2019. No. 160, pp. 420–427. DOI: https://doi.org/10.1016/j.egypro.2019.02.176
6. Старкова Л.Г., Морева Ю.А., Новоселова Ю.Н. Оптимизация микроклимата в православном храме методом моделирования воздушных потоков // Вестник ЮУрГУ. Сер. Строительство и архитектура. 2018. № 18 (3). С. 53–59. DOI: 10.14529/build180308
6. Starkova L.G., Moreva Yu.A., Novoselova Yu.N. Optimization of the microclimate in an Orthodox church by modeling air flows. Vestnik of the South Ural State University. The series «Construction and Architecture». 2018. Vol. 18. No. 3, pp. 53–59. (In Russian). DOI: 10.14529/build180308
7. De Luca F., Naboni E., Lobaccaro G. Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy. Energy and buildings. 2021. No. 238, 110831. DOI: https://doi.org/10.1016/j.enbuild.2021.110831
8. Teitelbaum E., Meggers F. Expanded psychrometric landscapes for radiant cooling and natural ventilation system design and optimization. Energy Procedia. 2017. No. 122, pp. 1129–1134. DOI: https://doi.org/10.1016/j.egypro.2017.07.436
9. Cannistraro M., Trancossi M. Enhancement of indoor comfort in the presence of large glazed radiant surfaces by a local heat pump system based on Peltier cells. Thermal science and engineering progress. 2019. No. 14, 100388. DOI: https://doi.org/10.1016/j.tsep.2019.100388
10. Vorre M., Jensen R., Dreau J. Radiation exchange between persons and surfaces for building energy simulations. Energy and buildings. 2015. No. 101, pp. 110–121. DOI: https://doi.org/10.1016/j.enbuild.2015.05.005
11. Zhang S., Zhu N., Lv S. Human response and productivity in hot environments with directed thermal radiation. Building and environment. 2021. No. 187, 107408. DOI: https://doi.org/10.1016/j.buildenv.2020.107408
12. Forouzandeh A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model. Sustainable Cities and Society. 2021. No. 70, 102878. DOI: https://doi.org/10.1016/j.scs.2021.102878
13. Малявина Е.Г., Фролова А.А., Ландырев С.С. Распределение локальной асимметрии результирующей температуры по помещению // Сантехника, отопление, кондиционирование. 2021. № 10. С. 36–39.
13. Malyavina E.G, Frolova A.A, Landyrev S.S. Distribution the local asymmetry of resultant temperature on the premise. Santehnika, otoplenie, kondicionirovanie (SOK). 2021. No. 10, pp. 36–39. (In Russian).
14. Малявина Е.Г., Ландырев С.С. Проверка выполнения требований ГОСТ 30494–2011 к параметрам внутренней среды на границе обслуживаемой зоны // АВОК. 2022. № 2. С. 40–42.
14. Malyavina E.G., Landyrev S.S. Checking for compliance with GOST 30494–2011 requirements for indoor environment parameters at the serviced zone border. АВОК. 2022. No. 2, pp. 40–42. (In Russian).
15. Shao S., Zhang H., Jiang L., You Sh., Zheng W. Numerical investigation and thermal analysis of a refrigerant-heated radiator heating system coupled with air source heat pump. Energy Procedia. 2019. No. 158, pp. 2158–2163. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115748
16. Dudzinska A., Kotowicz A. Features of materials versus thermal comfort in a passive building. Procedia Engineering. 2015. No. 108, pp. 108–115. DOI: https://doi.org/10.1016/j.proeng.2015.06.125
17. Malz S., Steininger P., Steffens O. On the development of a building insulation using air layers with highly reflective interfaces. Energy and buildings. 2021. No. 236, 110779. DOI: https://doi.org/10.1016/j.enbuild.2021.110779
18. Berardi U., Kisilewicz T., Kim S., Lechowska A., Paulos Ja., Schnotale Ja. Experimental and numerical investigation of the thermal transmittance of PVC window frames with silica aerogel. Journal of Building Engineering. 2020. No. 32, 101665. DOI: https://doi.org/10.1016/j.jobe.2020.101665
19. Fontana L. Experimental study on the globe thermometer behaviour in conditions of asymmetry of the radiant temperature. Applied Thermal Engineering. 2010. No. 30, lss. 6–7, pp. 732–740. DOI: https://doi.org/10.1016/j.applthermaleng.2009.12.003
20. Малявина Е.Г., Ландырев С.С. Расчет локальной асимметрии результирующей температуры на границе обслуживаемой зоны помещений в различных городах РФ // Известия вузов. Строительство. 2021. № 7. С. 82–92. DOI 10.32683/0536-1052-2021-751-7-82-92
20. Malyavina E.G., Landyrev S.S. Сalculation of the local asymmetry of the resulting temperature at the boundary of the room serviced area in various cities of the Russian Federation. Izvestiya vuzov. Stroitel’stvo. 2021. No. 7, pp. 82–92. (In Russian). DOI: 10.32683/0536-1052-2021-751-7-82-92

Для цитирования: Малявина Е.Г., Ландырев С.С. Зависимость параметров микроклимата на границе обслуживаемой зоны помещения от размеров окна // Жилищное строительство. 2022. № 8. С. 44–52. DOI: https://doi.org/10.31659/0044-4472-2022-8-44-52


Печать   E-mail