Radiant Heat Exchange of Enclosing Structures of Buildings with the Environment

Number of journal: 6-2023
Autors:

Okunev A.Yu.,
Levin E.V.

DOI: https://doi.org/10.31659/0044-4472-2023-6-43-51
УДК: 697.132

 

AbstractAbout AuthorsReferences
A model of radiant heat exchange between the enclosing structures of buildings and the environment has been developed. The model is based on the calculation of heat inputs to the enclosing structures from external radiation and takes into account direct and diffuse solar radiation, as well as radiant heat transfer of the enclosing structures to the environment. When modeling diffuse solar irradiation, scattering from the surface of the soil and other objects surrounding the building, and radiation heat exchange of enclosing structures with clouds and clear skies are taken into account. The calculation of radiant heat transfer is carried out for the site (the plane of the building envelope), oriented at an arbitrary angle to the horizontal plane and to the cardinal points. The developed model has a generalized character and is applicable to the terrain for any latitude on the Earth’s surface. When applying the model in practice, based on the time dependences of the intensity of direct solar radiation, determined by cloudiness, it is possible to obtain time continuous data on heat transfer to enclosing structures. For this, archived statistical data of meteorological stations or model meteorological conditions can be used. The developed model can be used in carrying out computational and theoretical studies of the heat-protecting characteristics of various enclosing structures, as well as studies on the influence of non-stationary external thermal influences on the thermal microclimate of premises and requirements for heating and air conditioning systems.
A.Yu. OKUNEV1,2, Candidate of Sciences (Physics and Mathematics);
E.V. LEVIN1, Candidate of Sciences (Physics and Mathematics) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Scientific-Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 State University of Land Use Planning (15, Kazakova Street, Moscow, 105064, Russian Federation)

1. Аренс Э., Хайнзерлинг Д., Пальяга Г. Влияние теплопоступлений от солнечной радиации на тепловой комфорт в помещении // Энергосбережение. 2019. № 5. С. 54–61.
1. Arens E., Heinzerling D., Palyaga G. Influence of heat input from solar radiation on thermal comfort in a room. Energosberezheniye. 2019. No. 5, pp. 54–61. (In Russian).
2. Hodder S., Parsons K. The effects of solar radiation on thermal comfort. International Journal of Biometeorology. 2007. Vol. 51. Iss. 3, pp. 233–250 DOI: 10.1007/s00484-006-0050-y
3. Середа С.Н. Влияние инсоляции на микроклимат помещения // Международный научно-исследовательский журнал. 2021. № 5 (107). Ч. 1. С. 93–98.
3. Sereda S.N. The influence of insolation on the microclimate of the premises. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal. 2021. No. 5 (107). Part 1, pp. 93–98. (In Russian).
4. Сотников А.Г. Математический и стереографический анализ интенсивности солнечной радиации и затенения светопроемов для расчета СКВ зданий // Инженерно-строительный журнал. 2010. № 4. С. 21–30.
4. Sotnikov A.G. Mathematical and stereographic analysis of the intensity of solar radiation and shading of light openings for the calculation of the SLE of buildings. Inzhenerno-stroitel’ny zhurnal. 2010. No. 4, pp. 21–30. (In Russian).
5. Hodder S., Parsons K. The effects of solar radiation and black body re-radiation on thermal comfort. Ergonomics. 2008. Vol. 51 (4), pp.476–491. DOI: 10.1080/00140130701710986
6. Recep Yumrutas, Mazhar Ünsal, Mehmet Kanoğlu. Periodic solution of transient heat flow through multilayer walls and flat roofs by complex finite Fourier transform technique. Building and Environment. 2005. Vol. 40. Iss. 8, pp. 1117–1125. https://doi.org/10.1016/j.buildenv.2004.09.005
7. Mohamed F. Zedan and Abdulaziz M. Mujahid. An efficient solution for heat transfer in composite walls with periodic ambient temperature and solar radiation. International journal of ambient energy. 2011. Vol. 14, pp. 83–98. DOI:10.1080/01430750.1993.9675599
8. Коркина Е.В., Горбаренко Е.В., Пастушков П.П., Тюленев М.Д. Исследование температуры нагрева поверхности фасада от солнечной радиации при различных условиях облучения // Жилищное строительство. 2020. № 7. С. 19–25. DOI: https://doi.org/10.31659/0044-4472-2020-7-19-25
8. Korkina E.V., Gorbarenko E.V., Pastushkov P.P., Tyulenev M.D. Investigation of the heating temperature of the facade surface from solar radiation under various irradiation conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 7, pp. 19–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-7-19-25
9. Spitler J.D., McQuiston F.C., Lindsey K. The CLTD/SCL/CLF cooling load calculation method. ASHRAE Transactions. 1993. 99(1). pp. 183–192.
10. Коркина Е.В., Войтович Е.В., Плющенко Н.Ю., Столяров М.Д Теплопоступления на фасад здания в застройке при учете теплообмена излучением // Вестник БГТУ им. В.Г. Шухова. 2019. № 9. С. 46–53.
10. Korkina Ye.V., Voytovich Ye.V., Plushenko N.Yu, Stolyarov M.D. Heat gains on the facade of a building in a building when accounting for heat transfer by radiation. Vestnik BSTU named after V.G. Shukhov. 2019. No. 9, pp. 46–53. (In Russian).
11. Yin Zhang, Enshen Long, Yanru Li, Pan Li. Solar radiation reflective coating material on building envelopes: Heat transfer analysis and cooling energy saving. Energy Exploration & Exploitation. 2017. Vol. 35. Iss.6. https://doi.org/10.1177/0144598717716285
12. Synnefa A., Santamouris M., Apostolakis K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment. Solar Energy. 2007. Vol. 81. No. 4, pp. 488–497. https://doi.org/10.1016/j.solener.2006.08.005
13. Kazutaka Isoda, Kohki Nagata, Mizue Ebisawa, Yukitoshi Otani Angle-selective reflection surface for energy efficiency. Proceedings Photonics for Solar Energy Systems VII. Strasbourg, France. 2018. Vol. 10688. 1068818. https://doi.org/10.1117/12.2307307
14. Karolis Banionis, Vytautas Stankevičius, Edmundas Monstvilas. Heat exchange in the surface of lightweight steel roof coatings. Journal of Civil Engineering and Management. 2011. Vol. 17(1), pp. 88–97 https://doi.org/10.3846/13923730.2011.556180
15. Shikha Ebrahim, Adel Alshayji. Redusing solar heat gain from included buildings’ roof by using radiant barrier system. Comsol Conference. Rotterdam. 2013. https://www.comsol.ru/paper/download/181725/ebrahim_paper.pdf
16. Кондратьев К.Я., Пивоварова З.И., Федорова М.П. Радиационный режим наклонных поверхностей. Л.: Гидрометеоиздат, 1978. 170 с.
16. Kondrat’yev K.YA., Pivovarova Z.I., Fedorova M.P. Radiatsionnyy rezhim naklonnykh poverkhnostey [Radiation regime of inclined surfaces]. Leningrad: Gidrometeoizdat. 1978. 170 p.
17. Коркина Е.В., Горбаренко Е.В., Гагарин В.Г., Шмаров И.А. Основные соотношения для расчета облучения солнечной радиацией стен отдельно стоящих зданий // Жилищное строительство. 2017. № 6. С. 27–33.
17. Korkina E.V., Gorbarenko E.V., Gagarin V.G., Shmarov I.A. Basic relationships for calculation of solar radiation expousure of walls of separate buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 6, pp. 27–33. (In Russian).
18. Коркина Е.В. Графический метод расчета поступающей на фасад прямой солнечной радиации при наличии противостоящего здания // Вестник МГСУ. 2019. Т. 14. Вып. 2. С. 237–249.DOI: 10.22227/1997-0935.2019.2.237-249
18. Korkina E.V. Graphic method for calculating direct solar radiation entering the facade in the presence of an opposing building. Vestnik of MSTU. 2019. Vol. 14. Issue. 2, pp. 237–249. (In Russian). DOI: 10.22227/1997-0935.2019.2.237-249
19. Esquivias P.M., Moreno D., Navarro J. Solar radiation entering through openings: Coupled assessment of luminous and thermal aspects. Energy and Buildings. 2018. Vol. 175. pp. 208–218. https://doi.org/10.1016/j.enbuild.2018.07.021
20. Kontoleon K.J. Energy saving assessment in buildings with varying façade orientations and types of glazing systems when exposed to sun. International Journal of Performability Engineering. 2013. Vol. 9. No 1, pp. 33–48.
21. Levinson R. Using solar availability factors to adjust cool-wall energy savings for shading and reflection by neighboring buildings. Solar Energy. 2019. Vol. 180, pp. 717–734. https://doi.org/10.1016/j.solener.2019.01.023

For citation: Okunev A.Yu., Levin E.V. Radiant heat exchange of enclosing structures of buildings with the environment. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 6, pp. 43–51. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-6-43-51


Print   Email