Design of the Model for Calculating Massive Reinforced Concrete Structures at the Early Stages of Construction

Number of journal: 4-2023
Autors:

Redikultsev E.A.,
Belyaeva Z.V.

DOI: https://doi.org/10.31659/0044-4472-2023-4-3-11
УДК: 624.012.45

 

AbstractAbout AuthorsReferences
Massive reinforced concrete structures at the construction stage experience a complex stress-strain state due to uneven thermal expansion caused by heat release during the exothermic reaction of concrete. The purpose of the article is to study the main factors that should be taken into account when constructing models for calculating massive reinforced concrete structures at the construction stage. The main factors determining the temperature and stress-strain state of concrete are summarized. Recommendations on the compilation of design models, the use of the necessary software, as well as on the establishment of individual parameters set in these software complexes are made, the admissibility of dividing the associated temperature–strength problem into two subtasks – temperature and strength is shown. The significance of the results obtained are in the possibility of compiling similar computational models with arbitrary dimensions, shape and boundary conditions.
E.A. REDIKULTSEV1,2, Engineer,
Z.V. BELYAEVA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ural Federal University (19, Mira Street, Ekaterinburg, 620002, Russian Federation)
2 “Effective design” LLC (29, Mashinostroitelei Street, Ekaterinburg, 620012, Russian Federation)

1. Smolana A., Klemczak B., Azenha M., Schlicke D. Early age cracking risk in a massive concrete foundation slab: Comparison of analytical and numerical prediction models with on-site measurements. Construction and Building Materials. 2021. No. 301. 124135. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124135
2. Struchkova A.Y., Barabanshchikov Yu.G., Semenov K.V., Shaibakova Al.A. Heat dissipation of cement and calculation of crack resistance of concrete massifs. Magazine of Civil Engineering. 2018. No. 2 (78), pp. 128–135. DOI: https://doi.org/10.18720/MCE.78.10
3. Ginzburg S.M., Korsakova L.V., Pavlenko P.V. Temperature regime and thermal stress state of rolled concrete dams during their construction. Izvestiya Vserossiyskogo nauchno-issledovatel’skogo instituta gidrotekhniki im. B.E. Vedeneyeva. 2007. Vol. 249, pp. 17–24. (In Russian).
4. Semenov K.V., Struchkova A.Ya. Thermal crack resistance of massive reinforced concrete structures during the construction period. AlfaBuild. 2017. No. 2 (2), pp. 31–33.
5. Redikultsev E.A., Belyaeva Z.V. Design of reinforced concrete structures in the early stages of construction taking into account heat dissipation of concrete. 7th International Symposium Actual Problems of Computational Simulation in Civil Engineering. Novosibirsk. 2018. P. 012026. DOI: https://doi.org/10.1088/1757-899X/456/1/012026
6. Solov’yanchik A.R., Pulyayev S.M., Pulyayev I.S. Investigation of heat release of cements used in the construction of a bridge across the Kerch Strait. Vestnik Sibirskogo gosudarstvennogo avtomobil’no-dorozhnogo universiteta. 2018. Vol. 15. No. 2 (60), pp. 283–293. (In Russian).
7 Klausen A., Gederaas O., Bjøntegaard Ø., Sellevold E. Comparison of tensile and compressive creep of fly ash concretes in the hardening phase. Cement and Concrete Research. 2017. No. 95, pp. 188–194. DOI: https://doi.org/10.1016/j.cemconres.2017.02.018
8. Leon G., Chen H.-L. Thermal analysis of mass concrete containing ground granulated blast furnace slag. Civil Engineering. 2021. No. 2, pp. 254–271. DOI: https://doi.org/10.3390/civileng2010014
9. Barannik N.V., Kotov S.V., Potapova Ye.S., Malakhin S.S. Determination of the heat release of concrete during its hardening under isothermal conditions. Vestnik NITs «Stroitel’stvo». 2022. No. 33 (2), pp. 44–62. (In Russian). DOI: https://doi.org/10.37538/2224-9494-2022-2(33)-44-62
10. Aniskin N.A., Nguyen Trong Chuc, Bryansky I.A., Dam Huu Hung. Determination of the temperature field and thermal stress state of the massive of stacked concrete by finite element method. Vestnik MGSU. 2018. Vol. 13. Iss. 11, pp. 1407–1418. DOI: 10.22227/1997-0935.2018.11.1407-1418
11. Kuriakose B., Rao B., Dodagouda G. Early-age temperature distribution in a massive concrete foundation. Procedia Technology. 2016. No. 25, pp. 107–114. DOI: https://doi.org/10.1016/j.protcy.2016.08.087
12. Bolgov A.N., Nevskiy A.V., Ivanov S.I., Sokurov A.Z. Numerical modeling of thermal stresses in concrete of massive structures during the hardening period. Promyshlennoye i grazhdanskoye stroitel’stvo. 2022. No. 4, pp. 6–13. (In Russian). DOI: https://doi.org/10.33622/0869-7019.2022.04.06-13
13. Sargam Y., Faytarouni M., Wang K. [et al.] Predicting thermal performance of a mass concrete foundation – A field monitoring case study. Case Studies in Construction Materials. 2019. Vol. 11. P. e00289. DOI: https://doi.org/10.1016/j.cscm.2019.e00289.
14. Shifrin S.A. Thermophysical foundations for the formation of consumer properties of structural elements of transport structures from monolithic and precast-monolithic reinforced concrete. Doctor diss. (Engineering). Moscow. 2007. 487 p. (In Russian).
15. Aniskin N.A., Shaytanov A.M. Full-scale experiment on heat release of concrete and use of its results for verification of the ANSYS software. Vestnik MGSU. 2022. Vol. 17. No. 6, pp. 727–737. (In Russian). DOI: https://doi.org/10.22227/1997-0935.2022.6.727-737
16. Carey A., Howard I., Shannon J. Variable temperature insulated block curing on laboratory scale specimens to simulate thermal profiles of modestly sized ultra-high performance concrete placements. Cement and Concrete Composites. 2022. No. 133. 104707. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104707
17. Van Lam T., Nguen C.C., Bulgakov B.I., Anh P.N. Composition calculation and cracking estimation of concrete at early ages. Magazine of Civil Engineering. 2018. No. 6 (82), pp. 136–148. DOI: https://doi.org/10.18720/MCE.82.13
18. Dawood A. Tensile and compressive creep of early age concrete: testing and modelling. Doctoral Thesis. Trondheim, Norway. 2003. https://www.researchgate.net/publication/267715486_Tensile_and_Compressive_Creep_of_Early_Age_Concrete_Testing_and_Modelling (Date of access 19.10.22)
19. Hilaire A., Benboudjema F., Darquennes A., Berthaud Y., Nahas G. Modeling basic creep in concrete at early-age under compressive and tensile loading. Nuclear Engineering and Design. 2014. Vol. 269, pp. 222–230. DOI: https://doi.org/10.1016/j.nucengdes.2013.08.034
20. Li L., Dabarera A., Dao V. Basic tensile creep of concrete with and without superabsorbent polymers at early ages. Construction and Building Materials. 2022. No. 320. 126180. DOI: https://doi.org/10.1016/j.conbuildmat.2021.126180
21. Korotchenko I.A., Ivanov E.N., Manovitsky S.S. Deformation of concrete creep in the thermal stress state calculation of massive concrete and reinforced concrete structures. Magazine of Civil Engineering. 2017. No. 1 (69), pp. 56–63. DOI: https://doi.org/10.18720/MCE.69.5
22. Jirásek M. Properties of creep compliance functions and their relation to retardation spectra. 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Prague. 2015, pp. 1269–1278. DOI: https://doi.org/10.1061/9780784479346.151
23. Bazant Z.P., Hubler M., Jirásek M. Improved estimation of long-term relaxation function from compliance function of aging concrete. Journal of engineering mechanics – ASCE. 2013. No. 139, pp. 146–152. DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000339
24. Ulitskiy I.I. Teoriya i raschet zhelezobetonnykh sterzhnevykh konstruktsii s uchetom dlitel’nykh protsessov [Theory and calculation of reinforced concrete bar structures, taking into account long-term processes]. Kyiv. 1967. 346 p.
25. Gustaf Westman. Concrete creep and thermal stresses. New creep models and their effects on stress development. Sweden. 1999.

For citation: Redikultsev E.A., Belyaeva Z.V. Design of the model for calculating massive reinforced concrete structures at the early stages of construction. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2023. No. 4, pp. 3–11. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2023-4-3-11


Print   Email