Influence of Geometric Characteristics of Fiber Reinforced Polymer (FRP) on Stresses at the FRP–Concrete Interface

Number of journal: 4-2022
Autors:

Denisova A.D.,
Shekhovtsov A.S.,
Appolonova Yu.S.

DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39
УДК: 678.029.46

 

AbstractAbout AuthorsReferences
A description and definition of delamination – the limiting state inherent for structures reinforced with external fiber reinforced polymer (FRP) is presented. The relevance of accounting for detachment when designing is justified. The process of numerical simulation of testing a bent reinforced concrete element strengthened with an external FRP laminate is described. Particular attention is paid to the task of contact between the FRP and concrete. A study of the influence of the geometric characteristics of the FRP (width, thickness and cross-sectional area) on the interfacial stresses in fiber reinforced polymer and concrete at their interface is conducted.
A.D. DENISOVA, Postgraduate Student (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.S. SHEKHOVTSOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Yu.S. APPOLONOVA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, Vtoraya Krasnoarmeiskaya Street, Saint-Petersburg, 190005, Russian Federation)

1. Воронков В.Р. Железобетонные конструкции с листовой арматурой. Л.: Стройиздат, 1975. 145 с.
1. Voronkov V.R. Zhelezobetonnye konstruktsii s listovoi armaturoi [Reinforced concrete structures with sheet reinforcement]. L.: Stroyizdat. 1975. 145 p.
2. Ржаницын А.Р. Составные стержни и пластинки. М.: Стройиздат. 1986. 316 с.
2. Rzhanitsyn A.R. Sostavnye sterzhni i plastinki [Composite rods and plates]. Moscow: Stroyizdat. 1986. 316 p.
3. Spadea G., Swamy R.N., Bencardino F. Strength and ductility of rc beams repaired with bonded CFRP laminates. Journal of Bridge Engineering. Vol. 9. 2001, pp. 349–355. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:5(349)
4. Ceroni F. Experimental performances of RC beams strengthened with FRP materials. Construction and Building Materials. 2010. Vol. 24, pp. 1547–1559. https://doi.org/10.1016/j.conbuildmat.2010.03.008
5. Khair Al-Deen Bsisu, Yasser Hunaiti, Raja Younes. Flexural ductility behavior of strengthened reinforced concrete beams using steel and CFRP plates. Jordan Journal of Civil Engineering. 2012. Iss. 3. Vol. 6, pp. 304–312.
6. Bonacci J.F., Maalej M. Behavioral trends of RC beams strengthened with externally bonded FRP. Journal of Composites for Construction. 2001. Vol. 5, pp. 102–113. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:2(102)
7. Sergio F. Brena, Beth M. Macri. Effect of carbon-fiber-reinforced polymer laminate configuration on the behavior of strengthened reinforced concrete beams. Journal of Composites for Construction. 2004. Vol. 8., pp. 229–240. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:3(229)
8. Marco Arduini, Antonio Nanni. Behavior of precracked rc beams strengthened with carbon FRP sheets. Journal of Composites for Construction. 1997. Vol. 1, pp. 63–70. https://doi.org/10.1061/(ASCE)1090-0268(1997)1:2(63)
9. Hamid Rahimi, Allan Hutchinson. Concrete beams strengthened with externally bonded FRP plates. Journal of Composites for Construction. 2001. Iss. 1. Vol. 5, pp. 44–56. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)
10. Timothy W. White, Khaled A. Soudki, Marie-Anne Erki. Response of RC beams strengthened with CFRP laminates and subjected to a high rate of loading. Journal of Composites for Construction. 2001. Iss. 3. Vol. 5, pp. 153–162. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:3(153)
11. Piotr Rusinowski, Björn Täljsten. Intermediate crack induced debonding in concrete beams strengthened with CFRP plates – an experimental study. Advances in Structural Engineering. 2009. Iss. 6. Vol. 12, pp. 793–806. https://doi.org/10.1260%2F136943309790327699
12. Nabil F. Grace., Wael F. Ragheb. Strengthening of concrete beams using innovative ductile fiber-reinforced polymer fabric. ACI Structural Journal. 2002. Vol. 99 (5). September, pp. 692–700.
13. Ritchie P.A., Thomas D.A., Lu L.W., Connelly G.M. External reinforcement of concrete beams using fiber reinforced plastic. ACI Structural Journal. 1991. Vol. 88 (4), pp. 490–500.
14. Zhang Ai-hui, JIN Wei-liang, LI Gui-bing. Behavior of preloaded rc beams strengthened with cfrp laminates. Journal of Zhejiang University SCIENCE A. 2006. Vol. 7, pp. 436–444. https://doi.org/10.1631/jzus.2006.A0436
15. Farah K., Sato Y. Numerical simulation of debonding failure of reinforced concrete beams strengthened with externally bonded FRP. Asia-Pacific Conference on FRP in Structures. 2007.
16. Ryan Bakay, Ezzeldin Yazeed Sayed-Ahmed, Nigel Graham Shrive. Interfacial debonding failure for reinforced concrete beams strengthened with carbon-fibre-reinforced polymer strips. Canadian Journal of Civil Engineering. 2009. Vol. 36. No. 1, pp. 103–121. https://doi.org/10.1139/L08-096
17. Adil K. Al-Tamimi, Rami Hawileh, Jamal Abdallaand, Hayder A. Rasheed. Effects of ratio of CFRP plate length to shear span and end anchorage on flexural behavior of SCC RC beams. Journal of Composites for Construction. 2011. Iss. 6. Vol. 15. November/December, pp. 908–919. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000221
18. Meier U., Kaiser H. Strengthening of structures with CFRP laminates. Proc., Specialty Conf. on Advanced Compos. Mat., ASCE. New York. 1991, pp. 224–232.
19. Young-Chan You, Ki-Sun Cho, JunHee Kim. An experimental investigation on flexural behavior of rc beams strengthened with prestressed CFRP strips using a durable anchorage system. Composites Part B: Engineering. Iss. 8. Vol. 43. December 2012, pp. 3026–3036. https://doi.org/10.1016/j.compositesb.2012.05.030
20. Norris T., Saadatmanesh H., Ehsani M. Shear and flexural strengthening of R/C Beams with carbon fiber sheets. Journal of structural engineering. 1997. Vol. 123 (7), pp. 903–911. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(903)
21. Есипов С.М. Усиление изгибаемых железобетонных элементов внешним композитным армированием с учетом условий эксплуатации: Дис. ... канд. техн. наук. Белгород, 2020. 207 с.
21. Esipov S.M. Reinforcement of bent reinforced concrete elements by external composite reinforcement taking into account operating conditions. Cand. Dis. (Engineering). Belgorod. 2020. 207 p. (In Russian).
22. Устинов А.М. Прочность и деформативность стальных изгибаемых элементов строительных конструкций, усиленных углекомпозитом: Дис. ... канд. техн. наук. Томск, 2020. 126 с.
22. Ustinov A.M. Strength and deformability of steel bendable elements of building structures reinforced with carbon composite. Cand. Dis. (Engineering). Tomsk. 2020. 126 p. (In Russian).
23. Jialai Wang. Cohesive-Bridging Zone Model of FRP–Concrete Interface Debonding. Engineering Fracture Mechanics. 2007. Iss. 20. Vol. 74, pp. 2643–2658. https://doi.org/10.1016/j.ijsolstr.2007.02.042
24. Jialai Wang. Cohesive zone model of intermediate crack-induced debonding of FRP plated concrete beam. International Journal of Solids and Structures. 2006. Iss. 21. Vol. 43, pp. 6630–6648. https://doi.org/10.1016/j.ijsolstr.2006.01.013
25. Xin Sha, Kames S. Davidson. Analysis of interfacial stresses in concrete beams strengthened by externally bonded FRP laminates using composite beam theory. Composite Structure. 2020. Vol. 243, pp. 1–18. https://doi.org/10.1016/j.compstruct.2020.112235
26. Smith S.T., Teng J.G. FRP-strengthened RC beams. Part II: assessment of debonding strength models. Engineering Structures. 2002. Iss. 4. Vol. 24, pp. 397–417. https://doi.org/10.1016/S0141-0296(01)00106-7
27. Paul W. Harper, Lu Sun, Stephen R. Hallett. A study on the influence of cohesive zone interface element strength parameters on mixed mode behavior. Composites Part A: Applied Science and Manufacturing. 2012. Iss. 4. Vol. 43. April, pp. 722–734. https://doi.org/10.1016/j.compositesa.2011.12.016

For citation: Denisova A.D., Shekhovtsov A.S., Appolonova Yu.S. Influence of geometric characteristics of fiber reinforced polymer (FRP) on stresses at the FRP–concrete interface. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 4, pp. 27–39. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-4-27-39


Print   Email