Automation of the Life Cycle of Buildings During Reconstruction and Major Repairs

Number of journal: 7-2022
Autors:

Rimshin V.I.,
Shubin I.L.,
Erofeev V.T.,
Avetisyan A.A.

DOI: https://doi.org/10.31659/0044-4472-2022-7-6-12
УДК: 69.059.7

 

AbstractAbout AuthorsReferences
The use of BIM technologies in the construction, reconstruction and overhaul of buildings and structures makes it possible to build a comfortable environment for human life from new engineering positions. The materials presented give an assessment of the use of automation of the life cycle of the main engineering systems of buildings and structures. The issues of energy efficiency, resource conservation, both new and multi-apartment residential buildings subject to reconstruction, rehabilitation and major repairs are taken into account from the positions of “smart house” and “smart city”. Automated and informatized systems used today in large cities of our country are proposed and analyzed. Systematized sets of technical means and software integrated into the premises are proposed, which makes it possible to complex management of buildings and adjacent territories.
V.I. RIMSHIN1,2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
I.L. SHUBIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.T. EROFEEV3, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.A. AVETISYAN2, Master’s Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (NIISF RAASN)(21,Locomotivny Driveway, Moscow, 127238, Russian Federation)
2 Moscow State University of Civil Engineering (NRU MGSU) (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)
3 Mordovian State University named after N.P.Ogarev (MSU named after N.P. Ogarev) (68/1, Bolshevistskaya Street, Saransk, Republic of Mordovia, 430000, Russian Federation)

1. Ямашкин С.А., Ямашкин А.А., Ямашкина Е.О., Занозин В.В. Интеграция знаний в цифровых инфраструктурах пространственных данных. Саранск, 2021.
1. Yamashkin S.A., Yamashkin A.A., Yamashkina E.O., Zanozin V.V. [Integratsiya znanii v tsifrovykh infrastrukturakh prostranstvennykh dannykh] Integration of knowledge in digital spatial data infrastructures. Saransk, 2021. (In Russian).
2. Римшин В.И., Кецко Е.С., Трунтов П.С., Кузина И.С. Энергетическая эффективность при проектировании производственных зданий. В сборнике: Безопасность строительного фонда России. Проблемы и решения: Материалы Международных академических чтений. Курский государственный университет. Курск, 2021. С. 148–161.
2. Rimshin V.I., Ketsko E.S., Truntov P.S., Kuzina I.S. Energy efficiency in the design of industrial buildings. In the collection: Safety of the construction fund of Russia. problems and solutions. materials of International academic readings. Kursk State University. Kursk, 2021. pp. 148–161. (In Russian).
3. Анпилов С.М., Римшин В.И., Ерышев В.А., Гайнуллин М.М., Мурашкин В.Г., Анпилов М.С., Сорочайкин А.Н., Китайкин А.Н. Фасадные системы. Опытно-конструкторские научные исследования: Сборник статей / Под ред. В.П. Селяева. Институт судебной строительно-технической экспертизы. Тольятти, 2021. С. 4–6.
3. Anpilov S.M., Rimshin V.I., Yeryshev V.A., Gainullin M.M., Murashkin V.G., Anpilov M.S., Sorochaykin A.N., Kitaykin A.N. Facade systems. In the collection: Experimental design research. Collection of articles. Institute of Forensic Construction and Technical Expertise. Togliatti. 2021, pp. 4–6. (In Russian).
4. Римшин В.И., Трунтов П.С., Кецко Е.С. Научно-техническая экспертиза конструкций для переоборудования открытых террас в помещениях многофункционального комплекса // Жилищное строительство. 2021. № 7. С. 37–41.
4. Rimshin V.I., Truntov P.S., Ketsko E.S. Scientific and technical expertise of structures for the conversion of outdoor terraces in the premises of the multifunctional complex. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2021. No. 7, pp. 37–41. (In Russian).
5. Римшин В.И., Трунтов П.С., Кецко Е.С. Комплексный подход к выполнению акустических расчетов при техническом обследовании аварийного жилого фонда // Строительные материалы. 2021. № 6. С. 21–24.
5. Rimshin V.I., Truntov P.S., Ketsko E.S. An integrated approach to performing acoustic calculations during technical inspection of emergency housing stock. Stroitel’nye Material [Construction Materials]. 2021. No. 6, pp. 21–24. (In Russian).
6. Калайдо А.В., Римшин В.И., Семенова М.Н., Быков Г.С. Пассивные технологии обеспечения радоновой безопасности воздушной среды проектируемых зданий // Вестник Поволжского государственного технологического университета. Сер. Материалы. Конструкции. Технологии. 2021. № 1. С. 28–35.
6. Kalaido A.V., Rimshin V.I., Semenova M.N., Bykov G.S. Passive technologies for ensuring radon safety of the air environment of projected buildings. Bulletin of the Volga State Technological University. Series: Materials. Constructions. Technologies. 2021. No. 1, pp. 28–35. (In Russian).
7. Патент РФ 2725162. Способ определения параметров трещиностойкости бетона в изделии. Шубин И.Л., Римшин В.И., Варламов А.А., Давыдова А.М. Заявл. 21.10.2019.
7. Patent RF 2725162. Sposob opredeleniya parametrov treshchinostoikosti betona v izdelii [Method for determining the parameters of crack resistance of concrete in a product]. Shubin I.L., Rimshin V.I., Varlamov A.A., Davydova A.M. Zayavl. 21.10.2019. (In Russian).
8. Кришан А.Л., Римшин В.И., Астафьева М.А. Сжатые трубобетонные элементы. Теория и практика. М.: АСВ, 2020. 322 с.
8. Krishan A.L., Rimshin V.I., Astafyeva M.A. Compressed pipe concrete elements. Theory and Practice Moscow, 2020. (In Russian).
9. Калайдо А.В., Римшин В.И., Семенова М.Н., Быков Г.С. Анализ зарубежного опыта обеспечения радоновой безопасности эксплуатируемых зданий (на примере США) // Вестник Вологодского государственного университета. Сер. Технические науки. 2020. № 4 (10). С. 54–58.
9. Kalaido A.V., Rimshin V.I., Semenova M.N., Bykov G.S. Analysis of foreign experience in ensuring radon safety of operated buildings (on the example of the USA). Bulletin of Vologda State University. Series: Technical Sciences. 2020. No. 4 (10), pp. 54–58. (In Russian).
10. Варламов А.А., Римшин В.И. Модели поведения бетона. Общая теория деградации. М.: Инфра-М, 2019. 436 с.
10. Varlamov A.A., Rimshin V.I. Modeli povedeniya betona. Obshchaya teoriya degradatsii. [Models of concrete behavior. General theory of degradation]. Moscow, 2019. 436 р. (In Russian).
11. Варламов А.А., Теличенко В.И., Римшин В.И. Модели материалов по теории деградации // Известия высших учебных заведений. Технология текстильной промышленности. 2019. № 4 (382). С. 59–65.
11. Varlamov A.A., Telichenko V.I., Rimshin V.I. Models of materials on the theory of degradation Proceedings of higher educational institutions. Technology of the textile industry. 2019. No. 4 (382), pp. 59–65. (In Russian).
12. Варламов А.А., Римшин В.И. Человек. Информация. Деградация // Биосферная совместимость: человек, регион, технологии. 2019. № 3 (27). С. 44–53.
12. Varlamov A.A., Rimshin V.I. Man. Information. Degradation. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2019. No. 3 (27), pp. 44–53. (In Russian).
13. Krishan A.L., Astafeva M.A., Rimshin V.I., Shubin I.L., Stupak A.A. Compressed reinforced concrete elements bearing capacity of various flexibility Lecture Notes in Civil Engineering. 2022. Vol. 182, pp. 283–291.
14. Rimshin V.I., Kuzina E.S., Shubin I.L.Analysis of the structures in water treatment and sanitation facilities for their strengthening // Journal of Physics: Conference Series. International Scientific Conference on Modelling and Methods of Structural Analysis. MMSA 2019. 2020. С. 012074.
15. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement // Journal of Physics: Conference Series. «International Conference on Engineering Systems 2020». 2020. С. 012031.
16. Eryshev V.A., Karpenko N.I., Rimshin V.I. The parameters ratio in the strength of bent elements calculations by the deformation model and the ultimate limit state method // IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference «FarEastCon 2019». 2020. С. 022076.
17. Merkulov S.I., Rimshin V.I., Shubin I.L., Esipov S.M. Modeling of the stress-strain state of a composite external strengthening of reinforced concrete bending elements // IOP Conference Series: Materials Science and Engineering. International Science and Technology Conference «FarEastCon 2019». 2020. С. 052044.
18. Varlamov A., Rimshin V., Tverskoi S.A Method for assessing the stress-strain state of reinforced concrete structures // E3S Web of Conferences. 2018 Topical Problems of Architecture, Civil Engineering and Environmental Economics, TPACEE 2018. 2019. С. 02046.
19. Telichenko V., Rimshin V., Eremeev V., Kurbatov V. MAthematical modeling of groundwaters pressure distribution in the underground structures by cylindrical form zone // MATEC Web of Conferences. 2018. С. 02025.
20. Telichenko V., Rimshin V., Kuzina E.Methods for calculating the reinforcement of concrete slabs with carbon composite materials based on the finite element model // MATEC Web of Conferences. 2018. С. 04061.
21. Varlamov A.A., Rimshin V.I., Tverskoi S.Y.The general theory of degradation // IOP Conference Series: Materials Science and Engineering. Vladivostok, 2018. С. 022028.

For citation: Rimshin V.I., Shubin I.L., Erofeev V.T., Avetisyan A.A. Automation of the life cycle of buildings during reconstruction and major repairs. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 7, pp. 6–12. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-7-6-12


Print   Email