Integration between BIM and Virtual Reality for Enhancing the Building and Occupants During the Operational Phase

Number of journal: 1-2-2020
Autors:

Mohammed A.B.

DOI: https://doi.org/10.31659/0044-4472-2020-1-2-56-64
УДК: 66.013.51

 

AbstractAbout AuthorsReferences
The performance level of a building is a measure of its success and failure throughout its life cycle. That leads the study to investigate key performance indicators (KPIs) to be measured, evaluated, and improved, especially during the operational phase. Consequently, the research adopts BIM technology and Immersive Virtual Reality (IVR) to model and represent an actual building in a virtual model for conducting the studies and alternatives to save time, effort, and cost, also to increase confidence in the expected results. Moreover, the example of a building used IVR and examples used BIM were analyzed to demonstrate that KPIs need to integrate BIM platforms with IVR technology. Therefore, increasing the efficiency of dealing with all indicators to measure and evaluate the responses and interactions of occupants with alternatives and solutions of this virtual model to develop and improve KPIs. Eventually, deducing and formulating a framework for dynamic interaction between a building and its occupants by integrating BIM and IVR to deal with KPIs.
A.B. MOHAMMED, Lecturer, Assistant Professor (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Fayoum University (http://www.fayoum.edu.eg/english/)

1. Lavy S., Garcia J.A., Dixit M.K. Establishment of KPIs for facility performance measurement: Review of literature. Facilities. 2010. Vol. 28, pp. 440–464. doi: 10.1108/02632771011057189
2. Kylili A., Fokaides P.A., Jimenez P.A. Lopez. Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review. Renewable and Sustainable Energy Reviews. 2016. 56, pp. 906–915. Doi:  10.1016/j.rser.2015.11.096
3. Hooper P., Knuiman M., Foster S., Giles-Corti B. The building blocks of a “Liveable Neighbourhood”: Identifying the key performance indicators for walking of an operational planning policy in Perth, Western Australia. Health Place. 2015. Vol. 36, pp. 173–183. Doi:  10.1016/j.healthplace.2015.10.005
4. Grey F., Fruchter R. Modelling the Dynamic interaction between building performance and occupant well-being. Conference: ASCE International Workshop on Computing in Civil Engineering. 2017. Vol. 3, pp. 326–334. doi: 10.1061/9780784407943
5. Gheisari M., Goodman S., Schmidt J., Williams G., Irizarry J. Exploring BIM and mobile augmented reality use in facilities management. Conference: Construction Research Congress. 2014, pp. 1941–1950. Doi:  10.1061/9780784413517.198
6. Li Y., O’Donnell J., García-Castro R., Vega-Sánchez S. Identifying stakeholders and key performance indicators for district and building energy performance analysis. Energy and Buildings. 2017. Vol. 155, pp. 1–15. http://dx.doi.org/10.1016/j.enbuild.2017.09.003
7. González-Gil A., Palacin R., Batty P. Optimal energy management of urban rail systems: Key performance indicators. Energy Conversion and Management. 2015. Vol. 90, pp. 282–291. doi: 10.1016/j.enconman.2014.11.035
8. Lavy S. A Literature review on measuring building performance by using key performance indicators. Architectural Engineering Conference (AEI). 2011, pp. 369–377. https://doi.org/10.1061/41168(399)48.
9. Aziz N.D., Nawawi A.H., Ariff N.R.M. Building information modelling (BIM) in facilities management: opportunities to be considered by facility managers. Procedia – Social and Behavioral Sciences. 2016. Vol. 234, pp. 353–362. doi: 10.1016/j.sbspro.2016.10.252.
10. AL Waer H., Clements-Croome D.J. Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment. 2010. Vol. 45. Iss. 4, pp. 799–807. doi: 10.1016/j.buildenv.2009.08.019
11. Meier H., Lagemann H., Morlock F., Rathmann C. Key performance indicators for assessing the planning and delivery of industrial services. Procedia CIRP. 2013. Vol. 11, pp. 99–104. doi: 10.1016/j.procir.2013.07.056
12. Parmenter D. Key performance indicators: developing, implementing, and using winning KPIs. John Wiley & Sons. 2015. 444 p.
13. Scheer A.W., Jost W., He H., Kronz A. Corporate performance management: ARIS in practice. 2006. doi: 10.1007/3-540-30787-7
14. Giuda G.M. Di, Villa V., Piantanida P. BIM and energy efficient retrofitting in school buildings. Energy Procedia. 2015. Vol. 78, pp. 1045–1050. doi:  10.1016/j.egypro.2015.11.066.
15. He Q., Wang G., Luo L., Shi Q., Xie J., Meng X. Mapping the managerial areas of Building Information Modeling (BIM) using scientometric analysis. International Journal of Project Management. 2017. Vol. 35, pp. 670–685. doi:  10.1016/j.ijproman.2016.08.001.
16. Abanda F.H., Tah J.H.M., Cheung F.K.T. BIM in off-site manufacturing for buildings. 2017. Journal of Building Engineering, pp. 89–102. doi: 10.1016/j.jobe.2017.10.002.
17. Smits W., van Buiten M., Hartmann T. Yield-to-BIM: impacts of BIM maturity on project performance. Building research and information. 2017. Vol. 45, pp. 336–346. doi: 10.1080/09613218.2016.1190579
18. Jung Y., Joo M. Building information modelling (BIM) framework for practical implementation. Automation in Construction. 2011. Vol. 20. Iss. 2, pp. 126–133. doi: 10.1016/j.autcon.2010.09.010.
19. Golabchi A., Akula M., Kamat V.R. Leveraging BIM For Automated Fault Detection In Operational. Conference: 30th International Symposium on Automation and Robotics in Construction and Mining; Held in conjunction with the 23rd World Mining Congress. 2013. 48109, pp. 1–11. Doi:  10.22260/ISARC2013/0020
20. McArthur J.J. A building information management (BIM) framework and supporting case study for existing building operations, maintenance and sustainability. Procedia Engineering. 2015. Vol. 118, pp. 1104–1111. Doi:  10.1016/j.proeng.2015.08.450
21. Paes D., Arantes E., Irizarry J. Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction. 2017. Vol. 84, pp. 292–303. doi: 10.1016/j.autcon.2017.09.016
22. Brooks A.L. Technologies of Inclusive Well-Being. 2014. doi: 10.1007/978-3-642-45432-5
23. Fernando T.P., Wu K.-C., Bassanino M.N. Designing a novel virtual collaborative environment to support collaboration in design review meetings. Journal of Information Technology in Construction. 2013. Vol. 18, 372–396.
24. Moreno A.M. Contribución de los huertos urbanos a la salud. Habitat y Sociedad. 2013. Vol. 6, pp. 85–103. https://idus.us.es/xmlui/handle/11441/48353
25. Faas D., Bao Q., Frey D.D., Yang M.C. The influence of immersion and presence in early stage engineering designing and building. Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIE-2013-021). 2014, pp. 139–151. doi: 10.1017/S0890060414000055
26. Berg L.P., Vance J.M. An Industry case study: investigating early design decision making in virtual reality. Journal of Computing and Information Science in Engineering (JCISE). 2016. Vol. 17. 011001. https://doi.org/10.1115/1.4034267
27. Won J., Lee G. How to tell if a BIM project is successful: A goal-driven approach. Automation in Construction. Vol. 69, pp. 34–43. Doi: 10.1016/j.autcon.2016.05.022
28. Migilinskas D., Popov V., Juocevicius V., Ustinovichius L. The benefits, obstacles and problems of practical bim implementation. Procedia Engineering. 2013. Vol. 57, pp. 767–774. doi: 10.1016/j.proeng.2013.04.097

For citation: Mohammed A.B. Integration between BIM and virtual reality for enhancing the building and occupants during the operational phase. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 1–2, pp. 56–64. DOI: https://doi.org/10.31659/0044-4472-2020-1-2-56-64


Print   Email