Investigation of the Heating Temperature of the Facade Surface from Solar Radiation under Various Irradiation Conditions

Number of journal: 7-2020
Autors:

Korkina E.V.,
Gorbarenko E.V.,
Pastushkov P.P.,
Tyulenev M.D.

DOI: https://doi.org/10.31659/0044-4472-2020-7-19-25
УДК: 699.84

 

AbstractAbout AuthorsReferences
In this paper, a study of the surface temperature of the FTCS-type wall was performed, considering solar radiation exposure under various cloud conditions during the month. Temperature sensors are mounted on the outer surface and its measurements are made, as well as the air temperature for one month of the warm period of the year. Measurements of the spectral coefficient of reflection of solar radiation by the facade surface were made, the value of which was used to calculate the absorption coefficient. At the Meteorological Observatory of Lomonosov Moscow State University, measurements of direct and diffuse solar radiation entering the horizontal surface were made, and the state of clouds in the sky was also recorded. The observation days are divided into three groups based on cloud conditions, and statistically significant differences between the groups are shown for the studied parameters. Using experimental data, hourly calculations of solar radiation entering the facade were performed. Using the measured air temperature, the values of direct and diffuse solar radiation, and the coefficient of absorption of solar radiation, the temperature of the outer surface of the wall is calculated using the Shklover’s formula. The measured values of the external wall surface temperature are compared with the calculated values. For days with no or little cloud cover, the differences reach 1.7 degrees, and on days with solid cloud cover, the differences are almost non-existent. Statistically significant differences were found between the measured and calculated temperature for groups of days divided by cloud conditions for the irradiation period from 10 to 17 hours, which indicates that it is possible to consider making amendments to the Shklover’s formula for clear days. It is planned to conduct longer studies of the temperature regime of the wall surface.
E.V. KORKINA1, 3, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
E.V. GORBARENKO1, 2, Сandidate of Sciences (Geography),
P.P. PASTUSHKOV1, 2, Candidate of Sciences (Engineering);
M.D. TYULENEV3, Engineer

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow,127238, Russian Federation)
2 Lomonosov Moscow State University (1, Leninskie gori, Moscow, 119234, Russian Federation)
3 National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. Gagarin V.G., Korkina E.V., Shmarov I.A. Teplopostupleniya i teplopoteri cherez steklopakety s povyshennymi teplozashchitnymi svoistvami. Academia. Arkhitektura i stroitel’stvo. 2017. No. 2, pp. 106–110. (In Russian).
2. Solov’ev A.K. Zerkal’nye fasady: ikh vliyanie na osveshchenie protivostoyashchikh zdanii. Svetotekhnika. 2017. No. 2, pp. 28–31. (In Russian).
3. Kupriyanov V.N., Sedova F.R. Obosnovanie i razvitie energeticheskogo metoda rascheta insolyatsii zhilykh pomeshchenii. Zhilishchnoe stroitel’stvo [Housing Construction]. 2015. No. 5, pp. 83–87. (In Russian).
4. Esquivias P.M., Moreno D., Navarro J. Solar radiation entering through openings: Coupled assessment of luminous and thermal aspects. Energy and Buildings. V. 175. 15 September 2018, pp. 208–218. DOI: https://doi.org/10.1016/j.enbuild.2018.07.021
5. Gagarin V.G., Zubarev K.P. Matematicheskoe modelirovanie nestatsionarnogo vlazhnostnogo rezhima ograzhdenii s primeneniem diskretno-kontinual’nogo podkhoda. Vestnik MGSU. 2020. Vol. 15. No. 2, pp. 244–256. (In Russian).
6. Khan R.J., Bhuiyan Md.Z., Ahmed D. H. Investigation of heat transfer of a building wall in the presence of phase change material (PCM). Energy and Built Environment. 2020, pp. 199–206. DOI: https://doi.org/10.1016/j.enbenv.2020.01.002
7. Vanaga R., Purvins R., Blumberga A., Veidenbergs I., Blumberga D. Heat transfer analysis by use of lense integrated in building wall. Energy Procedia. V. 128. 2017, pp. 453–460. DOI: https://doi.org/10.1016/j.egypro.2017.09.030
8. Agugiaro G., Nex F., Remondino F., Filippi R. De, Droghetti S., Furlanello C. Solar radiation estimation on building roofs and web-based solar cadaster. ­ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Melbourne, Australia. 2012. Vol. 1–2, pp. 177–182. DOI: https://doi.org/10.5194/isprsannals-I-2-177-2012
9. Stadnik V. V., Gorbarenko E. V., Shilovtseva O. A., Zadvornykh V. A. Sravnenie vychislennykh i izmerennykh velichin summarnoi i rasseyannoi radiatsii, postupayushchei na naklonnye poverkhnosti, po dannym nablyudenii v Meteorologicheskoi observatorii MGU. Trudy GGO. 2016. Vol. 581, pp. 138–154. (In Russian).
10. Pivovarova Z.I. Kharakteristika radiatsionnogo rezhima na territorii SSSR primenitel’no k zaprosam stroitel’stva [Characteristics of the radiation regime on the territory of the USSR in relation to construction requests]. Leningrad: Gidrometeoizdat. 1973. 128 p. (In Russian).
11. Shklover A.M., Vasil’ev B.F., Ushkov F.V. Osnovy stroitel’noi teplotekhniki zhilykh i obshchestvennykh zdanii [Fundamentals of construction heat engineering of residential and public buildings]. Moscow: Gosudarstvennoe izdanie literatury po stroitel’stvu i arkhitekture. 1956. 350 p. (In Russian).
12. Nauchno-prikladnoi spravochnik po klimatu SSSR. Se-riya 3. Mnogoletnie dannye [The scientific and application-oriented reference manual on climate of the USSR. Series 3. Long-term data]. Parts 1–6, issue 1–34. Saint-Petersburg: Gidrometeoizdat, 1989–1998. (In Russian).
13. Korkina E.V. Graficheskii metod rascheta postupayushchei na fasad pryamoi solnechnoi radiatsii pri nalichii protivostoyashchego zdaniya. Vestnik MGSU. 2019. Vol. 14. issue 2, pp. 237–249. DOI: https://doi.org/10.22227/1997-0935.2019.2.237-249. (In Russian).
14. Korkina E.V., Shmarov I.A. Analiticheskii metod rascheta rasseyannoi solnechnoi radiatsii, postupayushchei na vertikal’nuyu poverkhnost’ pri chastichno perekrytom nebosvode. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti. 2018. No. 3 (375), pp. 230–236. (In Russian).
15. Glants S. Mediko-biologicheskaya statistika [Biomedical statistics]. Moscow: Praktika. 1998. 459 p. (In Russian).

For citation: Korkina E.V., Gorbarenko E.V., Pastushkov P.P., Tyulenev M.D. Investigation of the heating temperature of the facade surface from solar radiation under various irradiation conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 7, pp. 19–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-7-19-25


Print   Email