Perspective High-Tech Construction Systems for Prefabricated Transformable Multistory Buildings

Number of journal: 4-2018
Autors:

Sychev S.А.

DOI: https://doi.org/10.31659/0044-4472-2018-4-36-40
УДК: 624.05

AbstractAbout AuthorsReferences
Industrial technologies for erection of prefabricated transformable buildings as an optimal combination of solutions make it possible to build multistory buildings with maximum possible compliance with energy efficient industrial high-speed erection of prefabricated buildings from the newest high-tech systems. Measures aimed at fulfilling the above requirements imply the implementation under the factory conditions of the complex of space-planning, structural, technological solutions as well as the provision of nstallation elements with modern, energy efficient engineering equipment and finishing. Thus, the complex use of basic provisions in practice makes it possible to create systems for construction of prefabricated buildings with pre-prepared foundations, roads, landscaping with engineering networks which allows for rapid construction of buildings from high-tech systems and operative connection of the building to pre-connected urban networks. The integral nature of “clean” construction sets a task, the solution of which is individually in each case, ensures sustainable development and is often innovative. The formation of the high-speed method of installation is to find rational solutions by means of successive analysis and changes in the components of labor and energy balance of the entire installation process.
S.A. SYCHEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-ya Krasnoarmeiskaya ul., St. Petersburg, 190005, Russian Federation)

1. Asaul A.N., Kazakov Ju.N., Bykov B.JL, Knjaz’ I.P., Erofeev P.Ju. Teorija i praktika ispol’zovanija bystrovozvodimyh zdanij [Theory and practice of use of pre-fabricated buildings]. Saint Petersburg: Gumanistika, 2004. 463 р.
2. Bad’in G.M., Sychjov S.A., Makaridze G.D. Tehnologii stroitel’stva i rekonstrukcii jenergojeffektivnyh zdanij [Technology of construction of prefabrication buildings]. Saint Petersburg: BHV, 2017. 464 p.
3. Afanas’ev A.A. Tehnologija vozvedenija polnosbornyh zdanij [Technology of construction of prefabrication buildings]. Moskow: ASV, 2000. 287 p.
4. Verstov V.V., Bad’in G.M. Osobennosti proektirovanija i stroitel’stva zdanij i sooruzhenij v Sankt-Peterburge. Vestnik grazhdanskih inzhenerov. 2010. No. 1 (22), pp. 96–105. (In Russian).
5. Vil’man Ju.A. Osnovy robotizacii v stroitel’stve [Robotization bases in construction]. Moscow: Vysshaja shkola, 1989. 120 p.
6. Fudge, J., Brown, S. Prefabricated modular concrete construction. Building engineer. 2011, 86 (6), pp. 20–21.
7. Knaack, U., Chung-Klatte, Sh., Hasselbach, R. Prefabricated systems: Principles of construction. De Gruyter, 2012, 67 p.
8. Wang Y., Huang Z., Heng L. Cost-effectiveness assessment of insulated exterior wall of residential buildings in cold climate. International Journal of Project Management. 2007. No. 25 (2), pp. 143–149.
9. Swamy R.N. Holistic design: key to sustainability in concrete construction. Proceedings of the ICE – Structures and Buildings. 2001. No. 146 (4), pp. 371–379.
10. Lawson R.M., Richards. J. Modular design for high-rise buildings. Proceedings of the ICE – Structures and Buildings. 2001. No. 163 (3), pp. 151–164.
11. Nadim W., Goulding J.S. Offsite production in the UK: The Way forward? A UK construction industry perspective Construction Innovation: Information, Process, Management. 2010. No. 10 (2), pp. 181–202.
12. Day A. When modern buildings are built offsite. Building engineer. 2010. No. 86 (6), pp. 18–19.
13. Allen E., Iano J. Fundamentals of building construction: Materials and methods. J. Wiley & Sons. 2004, 28 p.
14. Head P.R. Construction materials and technology: A Look at the future. Proceedings of the ICE – Civil Engineering. 2001. No. 144 (3), pp. 113–118.
15. Viscomi B.V., Michalerya W.D., Lu L.W. Automated construction in the ATLSS integrated building systems. Automation in construction. 1994, No. 3, pp. 35–43.
16. Sychev S.A. Technological principles of rapid housing, the future of automated and robotic Assembly buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 3, pp. 66–70. (In Russian).
17. Sychev S.A., Bad’in G.M. Perspektivnye tehnologii stroitel’stva i rekonstrukcii zdanij [Perspective technologies of construction and reconstruction of buildings]. Saint Petersburg: Lan’, 2017. 292 p.
18. Sychev S.А. Industrial technology of installation of prefabricated transformable buildings in the Far North. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 3, pp. 71–78. (In Russian).
19. Sychev S.А. Technology Of High-speed Installation Of Prefabricated Buildings Of A High-tech Building Systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 42–46. (In Russian).

For citation: Sychev S.А. Perspective high-tech construction systems for prefabricated transformable multistory buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 36–40. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-36-40


Print   Email