Experimental Studies of Three-Layer Wall Panels on Action of Dynamic Load

Number of journal: 3-2018
Autors:

Granovsky A.V.,
Chupanov M.R.,
Kovrigin A.G.,
Maslov A.V.

DOI: https://doi.org/10.31659/0044-4472-2018-3-18-23
УДК: 693.9

AbstractAbout AuthorsReferences
The analysis of the results of static and dynamic tests of reinforced concrete three-layer wall panel with flexible connections of glass-fiber reinforcement is made. As a result of static tests of panels’ layers for shear, the value of the shear stiffness coefficient of connections and the ultimate value of shearing force for the panel are established. During the process of dynamic tests of three-layer panels on the two-component vibro-platform have been simulated loads on the structure corresponding to the dynamic impacts at earthquakes of 7–9 point intensity according to the MSK-64 scale. During the test process, the frequency spectrum of impacts changed within the 1–10 Hz range at accelerations of the vibro-platform of 0.3–19 m/s2. The character of behavior of a face layer relative to the bearing (self-bearing) layer of the panel under the action of dynamic load, parallel and perpendicular to the plane of panels is analyzed.
A.V. GRANOVSKY1, Candidate of Sciences (Engineering), Head of Laboratory, Research Center of Seismic Stability of Constructions,
M.R. CHUPANOV1, Engineer;
A.G. KOVRIGIN2, Engineer, Head of Technical Support Group (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.V. MASLOV2, Engineer

1 TsNIISK named after V.A. Kucherenko, JSC Research Center of Construction, (6, bldg.1 2nd Institutskaya Street, 109428, Moscow, Russian Federation)
2 LLC “The Biysk Factory for Making Glass-Fiber Reinforced Plastics” (60/1, Leningradskaya Street, Biysk, Altai Krai, 659316, Russian Federation)

1. Gagarin V.G., Dmitriev K.A. Accounting Heat engineering heterogeneities when assessing the thermal protection of enveloping structures in Russia and European countries. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 14–16. (In Russian).
2. Gagarin V.G., Pastushkov P.P. On the evaluation of energy efficiency of energy saving measures. Inzhenernye sistemy. AVOK–Severo-Zapad. 2014. No. 2, pp. 26–29. (In Russian).
3. Gagarin V.G., Pastushkov P.P. Quantitative assessment of energy efficiency of energy saving measures. Stroitel’nye Mate-ialy [Construction Materials]. 2013. No. 6, pp. 7–9. (In Russian).
4. Royfe V.S. Calculation of moisture distribution through the thickness of an enclosing structure under natural conditions. Stroitel’nye Materialy [Construction Materials]. 2016. No. 6, pp. 36–39. (In Russian).
5. Kryshov S.I., Kurilyuk I.S. Problems of expert assessment of heat protection of buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 7, pp. 3–5. (In Russian).
6. Andreev D.A., Mogutov V.A., Tsirlin, A.M., the Choice of layers enclosing structures subject to prevent internal condensation. Stroitel’nye Materialy [Construction Materials]. 2001. No. 12, pp. 42–45. (In Russian).
7. Belyaev V.S., Granik Yu.G., Sailors Yu.A. Energoeffektivnost and heat-shielding of buildings [Jenergojeffektivnost’ i teplozashhita zdanij]. Moscow: ASV, 2012. 396 p.
8. Lobov O.I., Anan’ev A.I, Rymarev A.G. The main reasons for the discrepancy between the actual level of thermal protection of the exterior walls of modern buildings are regulatory requirements. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 11, pp. 68–70. (In Russian).
9. Lobov O.I., Anan’ev A.I To the issue of normalizing the level of thermal protection of the external walls of buildings. Gradostroitel’stvo. 2013. No. 5 (27), pp. 66–68. (In Russian).
10. Fokin K.F. Stroitel’naya teplotekhnika ograzhdayushchikh chastei zdanii / Pod redaktsiei Yu.A. Tabunshchikova i V.G. Gagarina. 5-e izdanie [Building heat engineering of enclosing parts of buildings. Edited by J.A. Tabunschikov and V.G. Gagarin. 5-th edition]. Moscow: AVOK-PRESS. 2006. 256 p.
11. Bogoslovskiy V.N. Stroitel’naya teplofizika [Building thermal physics]. Moscow: Vysshaja shkola. 1982. 415 р.
12. Kovrigin A.G., Maslov A.V., Vald A.A. Factors influencing on reliability of composite ties used in large-panel housing construction. Stroitel’nye Materialy [Construction Materials]. 2017. No. 3, pp. 31–34. (In Russian).
13. Kovrigin A.G, Maslov A.V. Composite Flexible Bracing in Large-Panel House Building. Stroitel’nye Materialy [Construction Materiаls]. 2016. No. 3, pp. 25–30. (In Russian).
14. Lugovoy А.N., Kovrigin A.G. Three-layer reinforced concrete wall panels with composite flexible communications. Stroitel’nye Materialy [Construction Materiаls]. 2015. No. 5, pp. 35–38. (In Russian).
15. Blazhko V.P., Granik M.Yu. Flexible bazaltoplastikovy communications for application in three-layer panels of external walls. Stroitel’nye Materialy [Construction Materiаls]. 2015. No. 5, pp. 56–57. (In Russian)

For citation: Granovsky A.V., Chupanov M.R., Kovrigin A.G., Maslov A.V. Experimental studies of three-layer wall panels on action of dynamic load. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-3-18-23


Print   Email