Calculation of Limit Axial Deformations of the Concrete Core of Compressed Tube-Reinforced Concrete Elements

Number of journal: 6-2019
Autors:

Krishan A.L.
Rimshin V.I.
Astafieva M.A.
Troshkina E.A.

DOI: https://doi.org/10.31659/0044-4472-2019-6-39-42
УДК: 624.012.3

 

AbstractAbout AuthorsReferences
The purpose of this work is to propose and substantiate analytical dependences that make it possible to reliably determine the limit axial deformations of the volumetric-compressed concrete core of tube-reinforced concrete elements. Previously published dependences are obtained empirically and therefore have significant limitations in the field of practical application. For example, they are not suitable for the calculation of advanced tube-reinforced concrete elements with pre-compressed concrete. According to the results of comparison with the experimental data, it is concluded that the formula obtained on the basis of the phenomenological approach makes it possible to adequately assess the limit deformations of compressed tube-reinforced concrete elements both with pre-compressed concrete and uncompressed concrete. This formula is universal and can be used for a variety of structures in which the concrete works under the conditions of volumetric compression.
A.L. KRISHAN1, Doctor of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
V.I. RIMSHIN2, Doctor of Sciences (Engineering), Corresponding Member of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.A. ASTAF'EVA1, Research Teacher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
E.A. TROSHKINA1, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Nosov Magnitogorsk State Technical University (11, Uritskogo Street, Magnitogorsk, 455000, Russian Federation)
2 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Ahmadi M., Naderpour H., Kheyroddin A. ANN model for predicting the compressive strength of circular steel-confined concrete. International Journal of Civil Engineering. 2017. Vol. 15. Iss. 2, pp. 213–221. DOI: https://doi.org/10.1007/s40999-016-0096-0
2. Han L.H., An Y.H. Performance of concrete-encased CFST stub columns under axial compression. Journal of Constructional Steel Research. 2014. Vol. 93, pp. 62–76. DOI: https://doi.org/10.1016/j.jcsr.2013.10.019
3. Han L.H., Lam D., Nethercot D. Design guid for concrete-filled double skin steel tubular structures. CRC Press, Taylor & Francis Group. Boca Raton. 2019. 113 p.
4. Lam D., Gardner L. Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research. 2008. Vol. 64. Iss. 11, pp. 1275–1282. DOI: https://doi.org/10.1016/j.jcsr.2008.04.012
5. Lu X., Hsu C. T. Stress-strain relations of high-strength concrete under triaxial compression. Journal of Materials in Civil Engineering. 2007. Vol. 19. Iss. 3, pp. 261–8. DOI: https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(261)
6. Subramanian N. Design of confinement reinforcement for RC columns. The Indian Concrete Journal. 2011. Vol. 85. Iss. 6, pp. 19–29.
7. Tao Z., Uy B., Han L.H., He S.H. Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration. Australian Journal of Structural Engineering. 2008. Vol. 8. Iss. 3, pp. 197–214. DOI: https://doi.org/10.1080/13287982.2008.11464998
8. Wang F., Han L.-H. Analytical behavior of special-shaped CFST stub columns under axial compression. Thin-Walled Structures. 2018. Vol. 129, pp. 404–417. DOI: https://doi.org/10.1016/j.tws.2018.04.013
9. Krishan A.L, Astafeva M.A., Chernyshova E.P. Strength of pre-compressed concrete – filled steel tube columns of square section. IOP Conference Series Materials Science and Engineering. 2018. Vol. 451 (012059) DOI: 10.1088/1757-899X/451/1/012059
10. Кришан А.Л., Астафьева M.A., Сабиров Р.Р. Расчет и конструирование трубобетонных колонн. Saarbrucken, Deutschland: Palmarium Academic Publishing, 2016. 261 c.
10. Krishan A.L., Astaf’eva M.A., Sabirov R.R. Raschet i konstruirovanie trubobetonnykh kolonn [Calculation and design of pipe columns]. Saarbrucken, Deutschland: Palmarium Academic Publishing. 2016. 261 p.
11. Krishan A.L, Astafeva M.A., Chernyshova E.P. Strength calculation of short concrete-filled steel tube columns. Journal of Concrete Structures and Materials. 2018. Vol. 84. No. 12. DOI: https://doi.org/10.1186/s40069-018-0322-z
12. Манаенков И.К. К совершенствованию диаграммы сжатого бетона c косвенным армированием // Строительство и реконструкция. 2018. № 2 (76). С. 41–50.
12. Manaenkov I.K. To improve the diagram of compressed concrete with indirect reinforcement. Stroitel’stvo i rekonstruktsiya. 2018. No. 2 (76), pp. 41–50. (In Russian).
13. Samani A.K., Attard M.M. A stress–strain model for uniaxial and confined concrete under compression. Engineering Structures. 2012. Vol. 41, pp. 335–349. DOI: https://doi.org/10.1016/j.engstruct.2012.03.027
14. Xiamuxi A., Hasegawa A. A study on axial compressive behaviors of reinforced concrete filled tubular steel columns. Journal of Constructional Steel Research. 2012. Vol. 76, pp. 144–154. DOI: https://doi.org/10.1016/j.jcsr.2012.03.023
15. Krishan A.L., Rimshin V.I., Astafeva M.A. Deformability of a volume-compressed concrete. IOP Conference Series Materials Science and Engineering. 2018. Vol. 463. DOI: 10.1088/1757-899X/463/2/022063.

For citation: Krishan A.L., Rimshin V.I., Astafieva M.A., Troshkina E.A. Calculation of limit axial deformations of the concrete core of compressed tube-reinforced concrete elements. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 6, pp. 39–42. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-6-39-42


Print   Email