Оптимизация параметров вязкоупругой модели элементов конструкций из композитных материалов на основе экспериментальных данных

Журнал: №11-2023
Авторы:

Мацеевич Т.А.,
Кирьянова Л.В.,
Смирнов В.А.,
Иванов П.С.

DOI: https://doi.org/10.31659/0044-4472-2023-11-32-36
УДК: 624

 

АннотацияОб авторахСписок литературы
По результатам проведенных испытаний изгибаемых балок, выполненных из различных вязкоупругих композитных материалов, подобраны оптимальные значения α-порядков дробной производной, входящей в дифференциальное уравнение реологической вязкоупругой модели. Подбор осуществлен с помощью трех характеристик отклонения. Предложен новый метод нахождения оптимальных значений параметров c и λ уравнения с дробной производной, позволяющие использовать это уравнение в качестве математической модели эксперимента. Все расчеты проведены с помощью специально написанной программы на языке Pyton. Показано, что полученные аналитические решения воздействия приложенной силы и отклика конструкции из различных композитных материалов дают удовлетворительную сходимость.
Т.А. МАЦЕЕВИЧ, д-р физ.-мат. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Л.В. КИРЬЯНОВА, канд. физ.-мат. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
В.А. СМИРНОВ, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
П.С. ИВАНОВ, старший преподаватель кафедры Высшей математики (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Национальный исследовательский Московский государственный строительный университет (129337, г. Москва, Ярославское ш., 26)

1. Тамразян А.Г., Хетагуров А.Т., Есаян С.Г. Расчет стареющих вязкоупругих тел моделированием их реологических характеристик // Сейсмостойкое строительство. Безопасность сооружений. 2002. № 2. С. 34–37.
1. Tamrazyan A.G., Khetagurov A.T., Esayan S.G. Calculation of aging viscoelastic bodies by modeling their rheological characteristics. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2002. No. 2, pp. 34–37. (In Russian).
2. Тамразян А.Г. Динамическая устойчивость сжатого железобетонного элемента как вязкоупругого стержня // Вестник МГСУ. 2011. № 1–2. С. 193–196.
2. Tamrazyan A.G. Dynamik stability of the compressed reinforced concrete element as viscoelastic bar. Vestnik MGSU. 2011. No. 1–2, pp. 193–196. (In Russian).
3. Handbook of Fractional Calculus with Applications. De Gruyter. Series ed. Tenreiro Machado J.A. 2019. Vol. 1–8.
4. Тарасов В.Е. Модели теоретической физики с интегродифференцированием дробного порядка. М.; Ижевск: Ижевский институт компьютерных исследований, 2011. 568 с.
4. Tarasov V.E. Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka [Models of theoretical physics with fractional order integro-differentiation]. M. Izhevsk: Institute of Computer Science. 2010. 568 p.
5. Atanacković T.M., Pilipović S., Stanković B., Zorica D. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. London: Wiley. 2014. 406 p.
6. Sandev T., Tomovshi Z., Fractional Equations and Models: Theory and Applications. Berlin: Springer. 2019. 363 p.
7. Shitikova M.V., Krusser A.I. Models of viscoelastic materials: A review on historical development and formulation. Advanced Structured Materials. 2022. Vol. 175. pp. 285–326. DOI: 10.1007/978-3-031-04548-6_14
8. Shabani M., Jahani K., Di Paola M., Sadeghi M.H. Frequency domain identification of the fractional Kelvin-Voigt’s parameters for viscoelastic materials. Mechanics of Materials. 2019. Vol. 137. 103099.DOI: 10.1016/j.mechmat.2019.103099
9. Lagos-Varas M., Movilla-Quesada D., Arenas J.P., Raposeiras A.C., Castro-Fresno D., Calzada-Pérez M.A.,Vega-Zamanillo A., Maturana J. Study of the mechanical behavior of asphalt mixtures using fractional rheology to model their viscoelasticity. Const. Build. Mat. 2019. Vol. 200, pp. 124–134. DOI: 10.1016/j.conbuildmat.2018.12.073
10. Wang Y., Harris J.M. Seismic attenuation models: multiple and fractional generalizations. SEG Technical Program Expanded Abstracts. 2020, pp. 2754–2758. DOI: 10.1190/segam2020-3421172.1
11. Popov I.I., Shitikova M.V., Levchenko A.V., Zhukov A.D. Experimental identification of the fractional parameter of the fractional derivative standard linear solid model for fiber-reinforced rubber concrete. Mechanics of Advanced Materials and Structures. 2023. DOI: 10.1080/15376494.2023.2191600
12. Ерохин С.В., Алероев Т.С. Параметрическая идентификация порядка дробной производной в модели Бегли–Торвика // Математическое моделирование. 2018. Т. 30. № 7. С. 93–102.DOI: 10.1134/S2070048219020030
12. Erokhin S.V., Aleroev T.S. Parametric identification of the order of a fractional derivative in the Begley–Torvik model. Math. Model. 2018. Vol. 30. No. 7, pp. 93–102. (In Russian). DOI: 10.1134/S2070048219020030
13. Xu Y., Guo Y.-Q., Huang X.-H., Dong Y.-R., Hu Z.-W.,Kim J. Experimental and theoretical investigation of viscoelastic damper by applying fractional derivative method and internal variable theory. Buildings. 2023. Vol. 13 (1). 239. DOI: 10.3390/buildings13010239
14. Bagley R.L., Torvi, P.J. On the fractional calculus model of viscoelastic behavior. J. Rheol. 1986. Vol. 30, pp. 133–155. DOI: 10.1122/1.549887
15. Caputo M. Vibrations of an infinite viscoelastic layer with a dissipative memory. Journal of the Acoustical Society. 1974. Vol. 56, pp. 897–904. DOI: 10.1121/1.1903344
16. Ingman D., Suzdalnitsky J. Control of damping oscillations by fractional differential operator with time-dependent order. Computer Methods in Applied Mechanics and Engineering. 2004. No. 193. Vol. 52, pp. 5585–5595. DOI: 10.1016/j.cma.2004.06.029
17. Naber M. Linear fractionally damped oscillator. International Journal of Differential Equations. 2010. Vol. 2010. 197020. DOI: 10.1155/2010/197020
18. Kiryanova L.V., Matseevich T. Sturm-Liouville problem with mixed boundary conditions for a differential equation with a fractional derivative and its application in viscoelasticity models. Axioms. 2023. Vol. 12. No. 8. P. 779. DOI: 10.3390/axioms12080779
19. Podlubny I. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. London: Academic Press. 1999. 340 p.
20. Кирьянова Л.В. Разностная схема для неоднородной модели Бегли-Торвика // Вестник Академии наук Чеченской Республики. 2020. № 1. Т. 48. С. 14–18. DOI: 10.25744/vestnik.2020.48.1.002
20. Kiryanova L.V. Difference scheme for the inhomogeneous Begley-Torvik model. Vestnik of the Academy of Sciences of the Chechen Republic. 2020. No. 1. Vol. 48, pp. 14–18. (In Russian). DOI: 10.25744/vestnik.2020.48.1.002

Для цитирования: Мацеевич Т.А., Кирьянова Л.В., Смирнов В.А., Иванов П.С. Оптимизация параметров вязкоупругой модели элементов конструкций из композитных материалов на основе экспериментальных данных // Жилищное строительство. 2023. № 11. С. 32–36.DOI: https://doi.org/10.31659/0044-4472-2023-11-32-36


Печать   E-mail