Требуемое сопротивление теплопередаче светопрозрачных ограждающих конструкций исходя из обеспечения комфортных условий

Журнал: №11-2021
Авторы:

Крутов А.А.,
Константинов А.П.

DOI: https://doi.org/10.31659/0044-4472-2021-11-14-20
УДК: 699.86

 

АннотацияОб авторахСписок литературы
Проведено обоснование требуемого сопротивления теплопередаче светопрозрачных конструкций исходя из обеспечения комфортных условий пребывания человека вблизи подобных конструкций в зимний период эксплуатации. Для этого в ходе исследования процесса теплообмена излучением между человеком и светопрозрачной конструкцией обоснована минимально допустимая температура внутренней поверхности светопрозрачной конструкции, которая обеспечивает комфортные условия. В ходе численного моделирования процесса нестационарного теплообмена через конструкции стеклопакетов в условиях резкого снижения температуры наружного воздуха определено время запаздывания изменения температуры на внутренней поверхности стеклопакетов вслед за изменением температуры наружного воздуха. Это позволило обосновать расчетную температуру наружного воздуха для определения требуемого сопротивления теплопередаче светопрозрачных конструкций исходя из обеспечения комфортных условий. Оно должно быть таким, чтобы обеспечить температуру на ее внутренней поверхности не ниже, чем на непрозрачной ограждающей конструкции. Это условие пока технологически невыполнимо для светопрозрачных конструкций, применяемых в настоящее время в типовом строительстве. Однако минимальных значений сопротивления теплопередаче, соответствующих интенсивности теплообмена, при котором человек чувствует себя вблизи светопрозрачной конструкций все еще комфортно (q = 93 Вт/м2), можно достичь на практике. Для условий РФ эта величина в среднем только в 1,4 раза выше нормативных значений. Установлено, что допустимая температура на внутренней поверхности светопрозрачной конструкции сопоставима с нормативной температурой точки росы. Ввиду этого видится целесообразным в случаях, когда не выполняется детальный расчет условий теплообмена между человеком и светопрозрачной конструкцией, выполнять назначение требуемого сопротивления светопрозрачных конструкций исходя из недопустимости образования конденсата на их внутренней поверхности при нормативных значениях температуры и относительной влажности внутреннего воздуха. При этом из-за малой тепловой инерции светопрозрачных конструкций в качестве расчетной температуры наружного воздуха следует использовать абсолютно минимальную.
А.А. КРУТОВ, магистр (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
А.П. КОНСТАНТИНОВ, канд. техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Национальный исследовательский Московский государственный строительный университет (129337, г. Москва, Ярославское ш., 26)

1. Константинов А.П., Ибрагимов А.М. Комплексный подход к расчету и проектированию светопрозрачных конструкций // Жилищное строительство. 2019. № 1–2. С. 14–17. DOI: https://doi.org/10.31659/0044-4472-2019-1-2-14-17
2. Melnikova I., Boriskina I. Modern translucent structures in multistory residential buildings // IOP Conference Series: Materials Science and Engineering. 2018. 022021. DOI 10.1088/1757-899X/365/2/022021
3. Плотников А.А. Архитектурно-конструктивные принципы и инновации в строительстве стеклянных зданий // Вестник МГСУ. 2015. № 11. С. 7–15.
4. Константинов А.П., Крутов А.А., Тихомиров А.М. Оценка теплозащитных характеристик оконных блоков из ПВХ профилей в зимний период эксплуатации // Строительные материалы. 2019. № 8. С. 65–72. DOI: https://doi.org/10.31659/0585-430X-2019-773-8-65-72
5. Зимин А.Н., Бочков И.В., Крышов С.И., Умнякова Н.П. Сопротивление теплопередаче и температура на внутренних поверхностях светопро-зрачных ограждающих конструкций жилых зданий г. Москвы // Жилищное строительство. 2019. № 6. С. 24–29. DOI: https://doi.org/10.31659/0044-4472-2019-6-24-29
6. Богословский В.Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха). СПб.: АВОК Северо-Запад, 2006. 400 с.
7. Борискина И.В. Здания и сооружения со светопрозрачными фасадами и кровлями. Теоретические основы проектирования светопрозрачных конструкций. СПб.: Любавич, 2012. 396 с.
8. Умнякова Н.П., Бутовский И.Н., Верховский А.А., Чеботарев А.Г. Требования к теплозащите наружных ограждающих конструкций высотных зданий // Жилищное строительство. 2016. № 12. С. 7–11.
9. Ильинский В.М. Строительная теплофизика. Ограждающие конструкции и микроклимат зданий. М.: Высшая школа, 1974. 320 с.
10. Предтеченский В.М. Архитектура гражданских и промышленных зданий. Т. 2. Основы проектирования. М.: Стройиздат, 1976. 215 с.
11. Stratiy P., Klykov I. Vacuum glazed units – Energy efficient glazing // IOP Conference Series. 2018. 032013. DOI: 10.1088/1757-899X/365/3/032013
12. Коркина Е.В. Критерий эффективности замены стеклопакетов в здании с целью энергосбережения // Жилищное строительство. 2018. № 6. С. 6–9.
13. Banionis К., Kuzmina J., Burlingis A., Ramanauskas J., Paukštys V. The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries // Energies. 2021. No. 14 (6). 169. DOI: https://doi.org/10.3390/en14061694

Для цитирования: Крутов А.А., Константинов А.П. Требуемое сопротивление теплопередаче светопрозрачных ограждающих конструкций исходя из обеспечения комфортных условий // Жилищное строительство. 2021. № 11. С. 14–20. DOI: https://doi.org/10.31659/0044-4472-2021-11-14-20