Modeling of Non-Uniform Deformations of the Base of Foundations in Complex Engineering and Geological Conditions

Number of journal: 12-2022
Autors:

Yarkin V.V.,
Lobacheva N.G.

DOI: https://doi.org/10.31659/0044-4472-2022-12-15-25
УДК: 624.15

 

AbstractAbout AuthorsReferences
When calculating buildings and structures interacting with an unevenly deformable base, the features of modeling uneven deformations of the base are influenced not so much by the causes of their occurrence as by their dependence on the external load on the base. Methods for determining uneven deformations of the base in complex engineering and geological conditions are considered. The methods can be divided into analytical and numerical. Analytical methods include: determination of extreme displacement or deformation at any characteristic point of the base with subsequent linear or non-linear approximation of the patterns of deformation of the base in the vicinity of the above point; determination of displacements or deformations in a number of points of the base, taking into account the heterogeneity of the geological structure, stress distribution fields, humidity and temperature. Of the existing numerical methods, the finite element method has received the greatest popularity. The disadvantages of numerical methods include certain difficulties in taking into account the special properties of soils, as well as displacements that do not depend on the external load on the foundation. The possibilities of the software for determining the rigidity characteristics of the base in the system “base – foundation – structure” are presented, taking into account deformations caused by: partial distributive capacity of the soil, shear and deconsolidation of the soil, heterogeneity of the soil mass in plan and depth, special properties of the soil, local soaking and underworking. It is shown that the development of software for determining non-uniform deformations of the base caused by complex engineering and geological conditions, using proven analytical methods of calculation and subsequent transfer of the results to design computer-aided design systems, is still relevant.
V.V. YARKIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
N.G. LOBACHEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Donbas National Academy of Civil Engineering and Architecture (2 Derzhavina Street, Makeevka, 86123, Donetsk People’s Republic)
2 National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Garagash B.A. Nadezhnost’ prostranstvennykh reguliruemykh sistem «osnovanie-sooruzhenie» pri neravnomernykh deformatsiyakh osnovaniya [Reliability of spatial adjustable systems “base-structure” with uneven deformations of the base]. Vol. I. Moscow: ASV. 2012. 416 p.
2. Garagash B.A. Nadezhnost’ prostranstvennykh reguliruemykh sistem «osnovanie-sooruzhenie» pri neravnomernykh deformatsiyakh osnovaniya [Reliability of spatial adjustable systems “base-structure” with uneven deformations of the base]. Vol. II. Moscow: ASV. 2012. 472 p.
3. Nuzhdin L.V., Mikhaylov V.S. Numerical modeling of pile foundations in the structural analysis software SCAD Office. Vestnik PNIPU. Stroitel’stvo i arkhitektura. 2018. No. 1, pp. 5–18. (In Russian). DOI: 10.15593/2224-9826/2018.1.01
4. Lobacheva N., Griniov V. Comparative analysis of calculations of strip foundation, taking into account the influence of adjoined building with different soil models. XXII International Scientific Conference «Construction the Formation of Living Environment» (FORM-2019). Moscow. 2019. Vol. 97, 04006 DOI: https://doi.org/10.1051/e3sconf/20199704006
5. Igosheva L.A., Kleveko V.I. Comparison of the results of determination of vertical settlement of a strip foundation of a analytical method and the finite element method in plane and dimensional tasks. Transport. Transportnye sooruzheniya. Ekologiya. 2014. No. 3, pp. 74–86. (In Russian).
6. Strokova L.A., Tarek S.S.T., Golubeva V.V., Ivanov V. Numerical modeling of influence of soil mass reinforcement with cement-sand grouting on foundation deformation. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2017. Vol. 328. No. 10, pp. 6–17. (In Russian).
7. Egorova E.S., Ioskevich А. ., Ioskevich V.V., Agishev K.N., Kozhevnikov V.Yu. Soil model implemented in the software packages SCAD Office and Plaxis 3D. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2016. No. 3, pp. 31. (In Russian).
8. Peng W. et al. A two-pile foundation model in sloping ground by finite beam element method. Computers and Geotechnics. 2020. Vol. 122. 103503. DOI: https://doi.org/10.1016/j.compgeo.2020.103503
9. Ter-Martirosyan A.Z, Mirnyy A.Yu., Sobolev E.S. Peculiarities of determining parameters of contemporary soil models by laboratory tests. Geotekhnika. 2016. No. 1, pp. 66–72. (In Russian).
10. Kalugina Ju.A., Keck D., Pronozin Ya.A. Determination of soil deformation moduli after National Building Codes of Russia and Germany. Inzhenerno-stroitel’nyi zhurnal. 2017. No. 7 (75), pp. 139–149. (In Russian). DOI: 10.18720/MCE.75.14
11. Antonov V.M., Ledenev V.V., Skrylev V.I. Proektirovanie zdanii v osobykh usloviyakh stroitel’stva i ehkspluatatsii [Design of buildings in special conditions of construction and exploitation]. Tambov: Izd-vo TGTU. 2002. 240 p.
12. Kushner S.G. Raschet deformatsii osnovanii zdanii i sooruzhenii [Calculation of deformations bases of buildings and structures]. Zaporozh’e: OOO “IPO Zaporozh’e”. 2008. 496 p.
13. SP 22.13330.2016. Soil bases of buildings and structures. Updated edition SNiP 2.02.01–83*. Moscow. 2016. 220 p. (In Russian).
14. Ledenev V.V. Osnovaniya i fundamenty pri slozhnykh silovykh vozdeistviyakh (opyty) [Bases and foundations under complex force influences (experiments)]. Vol. 3. Tambov: Izd-vo FGBOU VO «TGTU». 2017. 400 p.
15. Mangushev R.A., Karlov V.D., Sakharov I.I., Osokin A.I. Osnovaniya i fundamenty [Bases and foundations]. Moscow: ASV. 2011. 394 p.
16. Maskaleva V.V., Mukhamadiev V.R. Features of the weak clay soils. Stroitel’stvo unikal’nykh zdanii i sooruzhenii. 2014. No. 6, pp. 104–119. (In Russian).
17. Kudasheva M.I., Kaloshina S.V. Parameters of hardening soil model in the software package Plaxis. Khimiya. Ehkologiya. Urbanistika. 2017. Vol. 1, pp. 261–265. (In Russian).
18. Matselya V.I. Comparative analysis of the parameters of finite-element models of soils obtained by numerical methods. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universitetа. 2017. No. 1 (63), pp. 23–31. (In Russian).
19. Gorodetskii D.A., Barabash M.S., Vodop’yanov R.YU. i dr. Programmnyi kompleks Lira-SAPR 2013. Uchebnoe posobie [The Lira-SAPR 2013 software package. Study guide]. Kiev – Moscow: Ehlektronnoe izdanie. 2013. 376 p.
20. Genzerskii Yu.V., Kutsenko A.N., Marchenko D.V. i dr. LIRA 9.4. Primery rascheta i proektirovaniya. Prilozhenie k posobiyu LIRA 9.2 [LIRA 9.4. Examples of calculation and design. Appendix to the LIRA 9.2 Manual]. Kiev: NIIASS. 2006. 124 p.
21. Perel’muter A.V., Slivker V.I. Raschetnye modeli sooruzhenii i vozmozhnost’ ikh analiza [Design models of structures and the possibility of their analysis]. Moscow: SKAD SOFT. 2011. 736 p.
22. Tikhonyuk I., Kanev D., Kolesnikov A. The use of BIM technologies in the calculation of buildings in a complex geotechnical environment in conjunction with Revit, LIRA 10.6 and PLAXIS 3D programs. The website of the LIRA soft company. 2017. https://lira-soft.com/wiki/articles/primenenie-tekhnologiy-bim-pri-raschete-zdaniy-v-usloviyakh-slozhnoy-geotekhnicheskoy-obstanovki-s-p/ (Date of access 1.12.2022). (In Russian).
23. Sidorov V.N., Vershinin V.V. Metod konechnykh ehlementov v raschete sooruzhenii. Teoriya, algoritm, primery raschetov v programmnom komplekse SIMULIA Abaqus [The finite element method in the calculation of structures. Theory, algorithm, examples of calculations in the SIMULIA Abaqus software package]. Moscow: ASV. 2015. 288 p.
24. Yarkin V., Kukhar A. Determination of non-uniform settlements caused by decompression of soil in the excavation. International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2018). Saint-Petersburg. 2018. Vol. 245. 08002. DOI: https://doi.org/10.1051/matecconf/201824508002
25. Fuentes R. Influence of corners in excavations on damage assessment. Geotechnical Research. 2019. No. 6 (2), pp. 91–102. DOI: https://doi.org/10.1680/jgere.18.00017
26. Shulyat’ev O.A. Osnovaniya i fundamenty vysotnykh zdanii [Bases and foundations of high-rise buildings]. Moscow: ASV. 2016. 392 p.
27. Klepikov S.N. Raschet sooruzhenii na deformiruemom osnovanii [Calculation of structures on a deformable base]. Kiev: NIISK. 1996. 204 p.
28. Ulitskii V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov [Geotechnical support of urban development]. Saint-Petersburg: “Stroiizdat Severo-Zapad”, Gruppa kompanii “Georekonstruktsiya”. 2010. 551 p.
29. Melnikov R.V., Sagitova R.H. Calibration of “Hardening Soil” model parameters according to the results of laboratory testing in program “SoilTest”. Akademicheskii vestnik UraLNIIproekt RAASN. 2016. No. 3 (30), pp. 79–83. (In Russian).
30. Yarkin V., Kukhar H., Lobacheva N. Non-linear settlements of shallow foundation. XXII International Scientific Conference «Construction the Formation of Living Environment» (FORM-2019). Moscow. 2019. Vol. 97. 04034. DOI: https://doi.org/10.1051/e3sconf/20199704034
31. Mangushev R.A., Nikiforova N.S. Tekhnologicheskie osadki zdanii i sooruzhenii v zone vliyaniya podzemnogo stroitel’stva [Technological settlements of buildings and structures in the zone of influence of underground construction]. Moscow: ASV. 2017. 168 p.
32. Yarkin V.V. Modelirovanie sistemy «Osnovanie – fundament – sooruzhenie» v slozhnykh inzhenerno-geologicheskikh usloviyakh: monografiya [Modeling of the “Bases – foundation – structure” system in difficult engineering and geological conditions: monograph.]. Makeevka: Donbasskaya natsional’naya akademiya stroitel’stva i arkhitektury, EHBS ASV. 2020. 392 p. https://www.iprbookshop.ru/93864.html (Date of access 01.12.2022).
33. Robertson P., Cabal C. Guide to cone penetration testing for geotechnical engineering. California, USA: Greg Drillings & Testing, 2015. 143 p.
34. Ter-Martirosyan A.Z., Mirnyi A.Yu., Sidorov V.V., Sobolev E.S. Determination the parameters the Hardening Soil model based on the results of laboratory tests. Geotekhnika. Teoriya i praktika. Mezhvuzovskii tematicheskii sbornik trudov. Saint-Petersburg. 2013. Vol. 1, pp. 141–146. (In Russian).
35. Orekhov V.V. On the calculation of the bases by deformations by numerical methods. Osnovaniya, fundamenty i mekhanika gruntov. 2016. No. 1, pp. 2–4. (In Russian).
36. Ter-Martirosyan A.Z., Sidorov V.V., Ermoshina L.Yu. Determination and verification of parameters of the soft soil model with account for creep. Vestnik MGSU. 2018. Vol. 13. No. 6 (117), pp. 697–708. (In Russian). DOI: 10.22227/1997-0935.2018.6.697-708

For citation: Yarkin V.V., Lobacheva N.G. Modeling of non-uniform deformations of the base of foundations in complex engineering and geological conditions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 15–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-15-25


Print   Email