Features of Modeling the Operation of the Base under Dynamic Loads During the Operation of the Subway

Number of journal: 12-2022
Autors:

Ter-Martirosyan A.Z.,
Sidorov V.V.

DOI: https://doi.org/10.31659/0044-4472-2022-12-26-33
УДК: 625.42

 

AbstractAbout AuthorsReferences
In the practice of designing underground structures for transport purposes, it is often necessary to determine the most appropriate methods for modeling the transport load on the soil base from the operation of the underground interstation subway tunnels. To do this, it is necessary to choose methods for determining the dynamic parameters of the base soils and determine their influence on the obtained modeling results, determine the correct geometric parameters of the calculation models for solving the groups of problems considered. The main method of the work performed is numerical modeling with the implementation of test tasks with the application of a moving load (with simpler geological conditions and model elements) to identify the most significant parameters affecting the result. The applied dynamic parameters of the base soils were determined using a triaxial device with the ability to set dynamic loads, as well as using a resonant column. The paper compares direct calculations using traditional data from engineering and geological survey, as well as those carried out with a special set of dynamic parameters determined in the laboratory. It is noted that the application of traditional results of engineering-geological surveys is incorrect and gives overestimated values of additional displacements of structures within the zone of influence of dynamic impact from a moving train. The calculations performed show a significant influence of all considered parameters on the final results of the calculation. The use of parameter sets for modern soil models in the calculation showed that the model with increasing stiffness, taking into account small deformations (Hardening Soil small, hereinafter referred to as HSS) provides minimal additional displacements of gateway structures with minimal vibration amplitudes. The use of damping parameters in the form of the mass proportionality coefficient and the stiffness proportionality coefficient in the calculations showed a strong influence on the calculation result, determining a decrease in the amplitude of vibrations during dynamic impact and an increase in the rate of damping of vibrations during the period of free oscillations after the transport passage.
A.Z. TER-MARTIROSYAN, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. SIDOROV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoye Highway, Moscow, 129337, Russian Federation)

1. Seed H.B., Idriss I.M. Simplified procedures for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundation Engineering. 1971. Vol. 97, pp. 1249–1273.
2. Фадеев А.Б., Лисюк М.Б., Ишихара К. Поведение грунтов при землетрясениях / Пер. с англ. СПб.: НПО «Геореконструкция-Фундаментпроект», 2006. 384 с.
2. Fadeev A.B., Lisyuk M.B. Ishihara K. Povedenie gruntov pri zemletryaseniyah: Perevod s anglijskogo [Behavior of soils during earthquakes: translation from English]. Saint-Petersburg: NPO «Georekonstrukciya-Fundamentproekt». 2006. 384 p.
3. Вознесенский Е.А. Динамическая неустойчивость грунтов. М.: Эдиториал УРСС, 1999. 263 с.
3. Voznesenskiy E.A. Dinamicheskaya neustojchivost’ gruntov [Dynamic instability of soils]. Moscow: Editorial URSS. 1999. 263 p.
4. Ставницер Л.Р. Сейсмостойкость оснований и фундаментов. М.: АСВ, 2010. 447 с.
4. Stavnicer L.R. Sejsmostojkost’ osnovanij i fundamentov [Seismic resistance of bases and foundations]. Moscow: ASV. 2010. 447 p.
5. Болдырев Г.Г. Методы определения динамических свойств грунтов с комментариями к ГОСТ 12248–2010. Пенза: Прондо, 2014. 811 с.
5. Boldyrev G.G. Metody opredeleniya dinamicheskih svojstv gruntov s kommentariyami k GOST 12248–2010 [Methods for determining the dynamic properties of soils with comments to GOST 12248–2010]. Penza: Prondo. 2014. 811 p.
6. Гусев Г.Н., Епин В.В. Моделирование вибрационного воздействия от транспортной нагрузки на жилое здание. Численная модель, натурный эксперимент // Научно-технический вестник Поволжья. 2019. № 12. С. 188–190.
6. Gusev G.N., Epin V.V. Modeling of vibration impact from traffic load on a residential building. Numerical model, natural experiment. Nauchno-tekhnicheskij vestnik Povolzh’ya. 2019. No. 12, pp. 188–190. (In Russian).
7. Алексиков С.В., Лескин А.И., Гофман Д.И., Глазунов И.И. Влияние жесткости основания на напряжения в конструктивных слоях дорожной одежды // Вестник Волгоградского государственного архитектурно-строительного университета. Сер.: Строительство и архитектура. 2021. № 4 (85) С. 97–105.
7. Aleksikov S.V., Leskin A.I., Gofman D.I., Glazunov I.I. Influence of Foundation Rigidity on Stresses in Structural Layers of Pavement. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arhitektura. 2021. No. 4 (85), pp. 97–105. (In Russian).
8. Мондрус В.Л., Митрошин В.А. Воздействие движения поездов метрополитена неглубокого заложения на городскую застройку // Промышленное и гражданское строительство. 2020. № 9. С. 14–20.
8. Mondrus V.L., Mitroshin V.A. The impact of shallow subway train traffic on urban development. Promyshlennoe i grazhdanskoe stroitel’stvo. 2020. No. 9, pp. 14–20. (In Russian).
9. Panji M., Ansari B. Anti-pane seismic ground motion above twin horsehoe-shaped lined tunnels. Innovative infrastructure solutions. 2020. Vol. 5. No. 7. https://doi.org/10.1007/s41062-019-0257-5
10. Indraratna B., Sajjad M.B., Ngo T., Correia A.G., Kelly R. Improved performance of ballasted tracks at transition zones: A review of experimental and modelling approaches. Transportation geotechnics. 2019. Vol. 21, pp. 100260. DOI: 10.1016/j.trgeo.2019.100260
11. Shamsi M., Ghanbari A. Nonlinear dynamic analysis of Qom Monorail Bridge considering soil-pile-train interaction. Transportation geotechnics. 2020. Vol. 22, pp. 100309. DOI: 10.1016/j.trgeo.2019.100309
12. Connolly D.P., Costa P.A. Geodynamics of very high speed transport systems. Soil dynamics and earthquake engineering. 2020. Vol. 130, pp. 105982. DOI: 10.1016/j.soildyn.2019.105982
13. Lovska A., Fomin O., Pistek V., Kucera P. Dynamic load modelling within combined transport trains during transportation on a railway ferry. Applied science-basel. 2020. Vol. 10 (16), pp. 5710. DOI: 10.3390/app10165710
14. Chen J., Zhou Y. Dynamic vertical displacement for ballastless track-subgrade system under high-speed train moving loads. Soil dynamics and earthquake engineering. 2020. Vol. 129, pp. 105911. DOI: 10.1016/j.soildyn.2019.105911
15. Fu Q., Wu Y. Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads. Geomechanics and engineering. 2019. Vol. 19 (3), pp. 241–254. DOI: 10.12989/gae.2019.19.3.241
16. Wang H. and Chen R. Estimating static and dynamic stresses in geosynthetic-reinforced pile-supported track-bed under train moving loads. Journal of geotechnical and environmental engineering. 2019. Vol. 145(7). 04019029. DOI: 10.1061/(ASCE)GT.1943-5606.0002056
17. Yang C., Yan C., Qu L., Ding X., Liu W. Experimental and numerical studies on vibration characteristics of railway embankment. Journal of Central South University. 2022. Vol. 29. Iss. 5, pp. 1641–1652. DOI: 10.1007/s11771-022-5030-9
18. Xie W., Gao G., Song J. Wang Y. Ground vibration analysis under combined seismic and high-speed train loads. Underground Space (China). 2022. Vol. 7. Iss. 3, pp. 363–379. DOI: 10.1016/j.undsp.2021.10.001
19. Gao G., Zhang J., Chen J., Bi J. Investigation of saturation effects on vibrations of nearly saturated ground due to moving train loads using 2,5D FEM. Soil Dynamics and Earthquake Engineering. 2022. Vol. 158. 107288. DOI: 10.1016/j.soildyn.2022.107288
20. Mandhaniya P., Shahu J. Chandra S. Numerical analysis on combinations of geosynthetically reinforced earth foundations for high-speed rail transportation. Structures. 2022. Vol. 43, pp. 738–751. DOI: 10.1016/j.istruc.2022.07.003
21. Bettinelli L., Glatz B., Stollwitzer A., Fink J. Comparison of different approaches for considering vehicle-bridge-interaction in dynamic calculations of high-speed railway bridges. Engineering Structures. 2022. Vol. 270. 114897. DOI: 10.1016/j.engstruct.2022.114897

For citation: Ter-Martirosyan A.Z., Sidorov V.V. Features of modeling the operation of the base under dynamic loads during the operation of the subway. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2022. No. 12, pp. 26–33. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2022-12-26-33


Print   Email