Calculations of Noise in air Ducts when Evaluating the Noise Effects of Industrial Enterprises on Urban Development

Number of journal: 7-2020
Autors:

Gusev V.P.,
Ledenev V.I.,
Antonov А.I.,
Matveeva I.V.

DOI: https://doi.org/10.31659/0044-4472-2020-7-3-7
УДК: 629.042.5

 

AbstractAbout AuthorsReferences
Industrial enterprises for various purposes, including energy facilities, located in urban development, create a noise regime with increased levels on its territory. Often, increased noise effects occur when sound energy is emitted from the mouths of gas-air systems of enterprises. The amount of sound power emitted by air ducts depends on the decline in its levels inside them and in the areas from the noise source to the radiation site. Therefore, the determination of sound power level drops in the air duct is an important task when assessing the impact of noise on urban development. The article considers possible ways to estimate the sound power level drops inside air ducts. It is shown that a combined method implementing a mirror-diffuse model of sound reflection from the walls of the air duct should be used to calculate the level drops in metal air ducts. It is also established that the method for calculating the decline in levels proposed in the GOST R EN 12354-5–2012 for noise estimation on separate straight sections of air ducts, responds well to change in parameters of the ducts and can be used when designing the air duct from the standpoint of environmental protection from the noise levels of various companies, including enterprises providing the life activity of the city.
V.P. GUSEV1, Doctor of Sciences (Engineering);
V.I. LEDENEV2, Doctor of Sciences (Engineering),
A.I. ANTONOV2, Doctor of Sciences (Engineering),
I.V. MATVEEVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Tambov State Technical University (106, Sovetskaya Street, Tambov, 392000, Russian Federation)

1. Gusev V.P., Zhogoleva O.A., Ledenev V.I., Matveeva I.V. Calculation of noise of gas-air systems of thermal power plants in assessing their noise impact on buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2019. No. 7, pp. 47–51. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2019-7-47-51
2. Kremer L. Statistische Raumakustik. Stutgart: S/Hirzel Verlag. 1961.
3. Spravochnik po tekhnicheskoi akustike [Handbook of technical acoustics]. Leningrad: Sudostroenie. 1980. 440 p. (In Russian).
4. Bogolepov I.I. Promyshlennaya zvukoizolyatsiya [Industrial sound insulation]. Leningrad: Sudostroenie, 1986. 368 p. (In Russian).
5. Snizhenie shuma v zdaniyakh i zhilykh raionakh. Pod red. G.L. Osipov, E.Ya. Yudin [Noise reduction in buildings and residential areas. Edited by G.L. Osipov, E.Ya. Yudin]. Moscow: Stroyizdat. 1987. 558 p. (In Russian).
6. Zhogoleva O.A., Zhogolev S.A., Solomatin E.O. Noise calculation in the design of sound insulation of gas-air channels (modern theory and practice). Vestnik Vologodskogo gosudarstvennogo universiteta. Seriya: Tekhnicheskie nauki. 2018. No. 2 (2), pp. 63–66. (In Russian).
7. Giyasov B.I., Ledenyov V.I., Matveeva I.V. Method for noise calculation under specular and diffuse reflection of sound. Inzhenerno-stroitel’nyj zhurnal. 2018. No. 1 (77), pp.13–22. (In Russian).
8. Antonov A.I., Ledenev V.I., Matveeva I.V., Fedorova O.O. Influence of the nature of sound reflection from fences on the choice of method for calculating air noise in civil and industrial buildings. Privolzhskij nauchnyj zhurnal. 2017. No. 2 (42), pp. 16–23. (In Russian).
9. Gusev V.P., ZHogoleva O.A., Ledenev V.I., Solomatin E.O. Method for evaluating the propagation of noise through the air channels of heating, ventilation and air conditioning systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 6, pp. 52–54. (In Russian).
10. Tsukernikov I., Shubin I., Antonov A., Ledenev V., Nevenchannaya T. Noise сalculation method for industrial premises with bulky equipment at mirror-diffuse sound reflection. In Procedia Engineering of the 3rd International Conference on Dynamics and Vibroacustics of Mashines, DVM 2016. 2017, pp. 218–225.
11. Billon A., Picaut J., Valeau V., Sakout A. Acoustic Predictions in Industrial Spaces Using a DiffusionModel. Hindawi Publishing Corporation Advances in Acoustics and Vibration. 2012. ID 260394. DOI: https://doi.org/10.1155/2012/260394
12. Visentin C., Prodi N., Valeau V., Picaut J. A numerical and experimental validation of the room acoustics diffusion theory inside long rooms. 21st International Congress on Acoustics. (Canada). 2013.
13. Visentin C., Prodi N.. Valeau V., Picaut J. A numerical investigation of the Fick’s law of diffusion in room acoustics. The Journal of the Acoustical Society of America. 2012.
14. Foy C., Picaut J., Valeau V. Modeling the reverberant sound field by a diffusion process: analytical approach to the scattering. Proceedings of Internoise. (San Francisco). 2015.
15. Foy C., Picaut J., Valeau V.. Introduction de la diffusivity des parois au sein du modèle de diffusion acoustique. CFA. VISHNO. 2016.
16. Foy C., Valeau V., Picaut J., Prax C., Sakout A. Spatial variations of the mean free path in long rooms: Integration within the room-acoustic diffusion model. Proceedings of the 22 International Congress on Acoustics. (Buenos Aires). 2016.

For citation: Gusev V.P., Ledenev V.I., Antonov А.I., Matveeva I.V. Calculations of noise in air ducts when evaluating the noise effects of industrial enterprises on urban development. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 7, pp. 3–7. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-7-3-7