Assessment of Noise Conditions in the Premises of Enterprises Built into Residential Buildings

Number of journal: 6-2020
Autors:

Shubin I.L.,
Antonov А.I.,
Ledenev V.I.,
Matveeva I.V.,
Merkusheva N.P.

DOI: https://doi.org/10.31659/0044-4472-2020-6-3-8
УДК: 628.517

 

AbstractAbout AuthorsReferences
In residential buildings often are placed in enterprises for public use. A special feature of such enterprises is the presence of high noise levels in their premises. Noise has a negative impact on employees and visitors of enterprises, leading to noise in adjacent apartments. Most noise-producing sources emit non-constant sound power over time. As a result, non-permanent noise fields are formed in the premises. The calculation of their energy characteristics has a number of features. To assess the noise in such rooms, the article offers a calculation method based on the idea of the diffuse nature of sound reflection from fences. The method uses a statistical energy model that describes the distribution of reflected energy in closed air volumes in time and space. The direct difference method is used to implement the calculation model. The principles of construction of the calculation method are described, and its accuracy is estimated. It was found that the calculated declines in sound pressure levels over time at the calculated points are in good agreement with experimentally determined declines, and the error in calculating the levels does not exceed 3 dB. The accuracy of calculations is sufficient to evaluate the noise regime and design construction and acoustic means of reducing non-constant noise in time. The method allows you to make calculations in rooms with any complex space-planning parameters, and can be used in the design of noise protection measures in premises built into residential buildings of enterprises.
I.L. SHUBIN1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.I. ANTONOV2, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.I. LEDENEV2, Doctor of Sciences (Engineering),
I.V. MATVEEVA2, Candidate of Sciences (Engineering),
N.P. MERKUSHEVA2, Master of Science (Engineering)

1 Research Institute of Building Physics of the Russian Academy of Architecture and Construction Sciences (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)
2 Tambov State Technical University (106, Sovetskaya st., Tambov, 392000, Russian Federation)

1. Denisov E.I. Physical basis and method of calculating noise dose. Gigiena truda. 1979. No. 11, pp. 24–28 (In Russian).
2. Shubin I. L., Antonov A. I., Matveeva I. V., Merkusheva N.P. Calculation of energy parameters of noise of non-permanent workplaces in industrial buildings. Izvestiya vysshih uchebnyh zavedenij. Tekhnologiya tekstil’noj promyshlennosti. 2018. No. 3 (375), pp. 207–211. (In Russian).
3. Antonov A.I., Matveeva I.V., Merkusheva N.P., Porozhenko M.A. Construction and use of noise maps in the development of noise protection measures in industrial premises with non-permanent jobs. Biosfernaya sovmestimost’: chelovek, region, tekhnologii. 2018. No. 4 (24), pp. 48–56. (In Russian).
4. Hodgson M. On the accuracy of models for predicting sound propagation in fitted rooms. Journal of the Acoustical Society of America. 1990. V. 88. No. 2, pp. 23–30.
5. Kuttruff H. Stationare Schallausbreitung in Flachdrumen. Acustica. 1985. V. 57. No. 2, pp. 31–34.
6. Antonov A.I., Ledenev V.I., Matveeva I.V., Merkusheva N.P. The digitalization of acoustic calculations in the computational design of buildings. Privolzhskij nauchnyj zhurnal. 2019. No. 4, pp. 31–40. (In Russian).
7. Ledenev V.I., Antonov A.I., ZHdanov A.E. Statistical energy methods for calculating reflected noise fields of premises. Vestnik TGTU. 2003. V. 3. No. 4, pp. 713–717. (In Russian).
8. Antonov A., Ledenev V., Nevenchannaya T., Tsu-kernikov I., Shubin I. Coupling Coefficient of Flux Density and Density Gradient of ReflectedSound Energy in Quasi-Diffuse Sound Fields. Journal of Theoretical and Computational Acoustics. 2019. V. 27. No. 2. 1850053.
9. Billon A, Picaut J, Valeau V, Sakout A. Acoustic Predictions in Industrial Spaces Using a Diffusion Model. Hindawi Publishing Corporation Advances in Acoustics and Vibration. 2012. DOI: 10.1155 / 2012/260394
10. Visentin C., Prodi N., Valeau V., Picaut J. A numerical and experimental validation of the room acoustics diffusion theory inside long rooms. 21st International Congress on Acoustics. (Canada). 2013.
11. Visentin C., Prodi N., Valeau V., Picaut J. A numerical investigation of the Fick’s law of diffusion in room acoustics. The Journal of the Acoustical Society of America. 2012.
12. Foy C., Picaut J., Valeau V. Modeling the reverberant sound field by a diffusion process: analytical approach to the scattering. Proceedings of Internoise. (San Francisco). 2015.
13. Foy C., Picaut J., Valeau V. Introduction de la diffusivity des parois au sein du modèle de diffusion acoustique. CFA / VISHNO. 2016.
14. Foy C., Valeau V., Picaut J., Prax C., Sakout A.. Spatial variations of the mean free path in long rooms: Integration within the room-acoustic diffusion model. Proceedings of the 22 International Congress on Acoustics. (Buenos Aires). 2016.
15. Ollendorf F. Statistischeraumakustik als diffusions-problem. Acustica. 1969. V. 21. No. 4, pp. 236–245.
16. Antonov A.I., Bacunova A.V., Kryshov S.I. Method for evaluating the noise fields of premises in the design of noise protection in civil buildings with non-constant time sources. Zhilishchnoe Stroitel’stvo [Housing Constructions]. 2012. No. 4, pp. 58–60 (In Russian).
17. Tihonov A.N., Samarskij A.A. Uravneniya matematicheskoi fiziki [Equations of mathematical physics]. Moscow: Nauka, 1977. 736 p.

For citation: Shubin I.L., Antonov А.I., Ledenev V.I., Matveeva I.V., Merkusheva N.P. Assessment of noise conditions in the premises of enterprises built into residential buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2020. No. 6, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2020-6-3-8


Print   Email