Личный кабинет

Engineering Solutions Implemented During the Great Patriotic War

Number of journal: 5-2018
Autors:

Umnyakov P.N.

DOI: https://doi.org/10.31659/0044-4472-2018-5-25-28
УДК: 692.842

AbstractAbout AuthorsReferences
Space-planning, structural concepts and ventilation systems of the Central Academic Theater of the Russian Army (former the Red Army Theatre) built in the end of 1930s in Moscow are considered. This building was the first theatre built after 1917, that’s why many solutions, both space-planning and structural, as well solutions of engineering systems were adopted by Soviet designers for the first time. The article also presents the space-planning solutions of dugout-bomb shelters and ventilation systems of bomb-shelters in which the inhabitants of Moscow escaped from the bombing. Some episodes of the end of the Great Patriotic War connected with the mine clearing of the Reich Chancellery in Berlin in May 1945 are given.
P.N. UMNYAKOV, Doctor of Sciences (Engineering)

Art Institute of Restoration (3, bldg.4, N.Bauman Township, 105037, Moscow, Russian Federation)

1. Barhin G.B. Teatry [Theaters]. Moscow: Izd-vo Akademii arhitektury SSSR, 1947.
2. Arhitektura Strany Sovetov. TEATRY [Architecture Of The Soviet Country. THEATRES]. Moscow: Izd-vo Akademii arhitektury SSSR, 1948.
3. Yudin M.V. The Battle for Moscow. Figures and facts. Prepo-davanie istorii v shkole. 2017. No. 1, pp. 33–41. (In Russian).
4. Gusev A.V. Protection of the population and objects of Moscow from Nazi aviation. Vestnik Leningradskogo gosudarstvennogo universiteta im. A.S. Pushkina. 2011. Vol. 4. No. 2, pp. 91–96.
5. Gavrilov B.I. Moscow the frontline. 1941–1942. Archival documents and materials. Otechestvennaya istoriya. 2003. No. 3, pp. 164–166. (In Russian).
6. Buharina B.H. Metro is built brilliantly! Arhitektura i stroitel’stvo Moskvy. 2010. T. 550. No. 2, pp. 40–52. (In Russian).
7. Rogak YU.V., Rybina M.V. Economy of Soviet cities during the great Patriotic war. Molodoj uchenyj. 2017. No. 21 (155), pp. 372–375. (In Russian).
8. Umnyakov P.N. Teplovoj i ehkologicheskij komfort. Proektirovanie processov okazaniya uslug [Thermal and environmental comfort. Design of services rendering processes]. Moscow: Forum, 2009. 440 p.
9. Umnyakov P.N. Osnovy rascheta i prognozirovaniya teplovogo komforta i ehkologicheskoj bezopasnosti na predpriyatiyah teks-til’noj i legkoj promyshlennosti [Bases of calculation and forecas-ting of thermal comfort and ecological safety at the enterprises of textile and light industry]. Moscow: Forum, 2003. 400 p.
10. Umnyakov P.N., Umnyakova N.P., Aldoshina N.E. Sohranenie drevnih shedevrov russkoj ikonopisi Troickogo sobora Svyato Troickoj Sergievoj Lavry. Zhilishchnoe stroitel’stvo [Housing construction]. 2017. No. 6, pp. 40–44. (In Russian).
11. Umnyakov P.N., Umnyakova N.P., Aldoshina N.E. Obespechenie teplovogo rezhima dlya sohraneniya drevnih shedevrov russkoj ikonopisi Troickogo sobora Svyato Troickoj Sergievoj Lavry. Zhilishchnoe stroitel’stvo [Housing construction]. 2017. No. 8, pp. 25–29. (In Russian).

For citation: Umnyakov P.N. Engineering solutions implemented during the Great Patriotic war. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 5, pp. 25–28. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-5-25-28

Examples of Strengthening of Dangerous Reinforced Concrete Structures

Number of journal: 5-2018
Autors:

Arleninov P.D.,
Krylov S.B.

DOI: https://doi.org/10.31659/0044-4472-2018-5-19-23
УДК: 693.95

AbstractAbout AuthorsReferences
Dangerous structures are special structures which require a special approach when strengthening them, since any errors can lead to irreparable consequences. To solve the problems of strengthening of such structures is necessary very carefully, since practically any strengthening involves incorporating the existing (dangerous) structure in the operation and providing any additional impact on such a structure. A few examples of strengthening of reinforced concrete structures in the dangerous state are presented from the archive of works conducted by the Laboratory of engineering methods of study of reinforced concrete structures of A.A. Gvozdev NIIZHB. These examples show that the recommendations for strengthening dangerous structures can vary depending on every concrete case.
P.D. ARLENINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.B. KRYLOV, Doctor of Sciences (Engineering)

Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev (NIIZHB), JSC “Research Center of Construction”(6, 2nd Institutskaya Street, 109428, Moscow, Russian Federation)

1. Travush V.I., Konin D.V., Rozhkova L.S., Krylov A.S., Kaprielov S.S., Chilin I.A., Martirosyan A.S., Fimkin A.I. Experimental study of composite structures, working for eccentric compression. ACADEMIA. Arkhitektura i stroitel’stvo. 2016. No. 3, pp. 127–135. (In Russian).
2. Arleninov P.D. Experience of development of strengthening of the reinforced concrete overpass metalwork. Promyshlen-noe i grazhdanskoe stroitel’stvo. 2013. No. 1, pp. 37–38. (In Russian).
3. Arleninov P.D., Krylov S.B. Role of load application scheme for ensuring the bearing capacity of building structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 30–33. (In Russian).
4. Аrleninov P.D. Krylov S.B. Current state of nonlinear calculations of reinforced concrete designs. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2017. No. 3, pp. 50–53. (In Russian).
5. Galustov K.Z. Nelinejnaja teorija polzuchesti betona i raschet zhelezobetonnyh konstrukcij. [Nonlinear theory of creep of concrete and calculation of reinforced concrete designs]. Moscow: Izdatelstvo fiz.-mat. litеratury. 2006, pp. 94–110.
6. Shulyat’ev O.A., Mozgacheva O.A., Pospekhov V.S. Osvoe-nie podzemnogo prostranstva gorodov [Development of underground space of the cities]. Moscow: ASV. 2017 510 p.
7. Bondarenko V.M., Rimshin V.I. Primery rascheta zhelezo-betonnykh i kamennykh konstruktsii. [Examples of calcula-tion of reinforced concrete and stone designs]. Moscow: Student, 2014. 539 p.
8. Rimshin V.I., Bondarenko V.M., Bakirov R.O., Nazaren-ko V.G. Zhelezobetonnye i kamennye konstrukcii [Reinforced concrete and stone designs]. Moscow: Student. 2010, 887 p.
9. Alexander M.G. Aggregates and the Deformation Properties of Concrete. ACI Materials Journal. 1996. Vol. 93 (No. 6), pp. 569–577.
10. Larionov E.A., Rimshin V.I., Vasil’kova N.T. Power method of assessment of stability of the compressed reinforced concrete elements. Stroitel’naja mehanika inzhenernyh konstrukcij i sooruzhenij. 2012. No. 2, pp. 77–81. (In Russian).
11. Haranki B. Strength, modulus of elasticity, creep and shrinkage of concrete used in Florida. University оf Florida. 2009. 176 р.

For citation: Arleninov P.D., Krylov S.B. Examples of strengthening of dangerous reinforced concrete structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 5, pp. 19–23. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-5-19-23

Features of Behavior of Flexural Members with Composite Polymeric Reinforcement under Load

Number of journal: 5-2018
Autors:

Antakov I.A.

DOI: https://doi.org/10.31659/0044-4472-2018-5-15-18
УДК: 691.328.4

AbstractAbout AuthorsReferences
The article presents the results of experimental studies of strength, crack resistance of normal sections and deformability of flexural members reinforced with composite reinforcement. The study used bars of glass-composite and basalt-composite reinforcement, with pre-tensioning including. The beam specimens were subjected to the short duration loads. According to the results of the tests, cracking loads, the achievement of limit states for deflections and the width of cracks opening, fracture have been established. The dependence of the crack formation moment on the diameter of type of reinforcement has been revealed. Operation of beams under load after cracking and till failure is characterized by mostly linear dependence between the values of bending moments and deflections.Four mechanisms of destruction of beams were recorded. It is established that that the serviceability limit states come at 26.1–52.9% of rupture load, for beams with pre-stressed composite reinforcement – 42.3–70.3%. More efficient is the use of bars of smaller diameter.
I.A. ANTAKOV, assistant (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Kazan State University of Architecture and Engineering (1, Zelenaya Street., Kazan, 420043, Republic of Tatarstan, Russian Federation)

1. Al-Sunna R., Pilakoutas K., Hajirasouliha I., Guadagnini M. Deflection behavior of FRP reinforced concrete beams and slabs: An experimental investigation. Composites Part B: Engineering, 43 (5). 2012. 23 p.
2. Barris C., Torres L., Turon A., Baena M., Mias C. Experimental study of flexural behaviour of GFRP reinforced. Fourth International Conference on FRP Composites in Civil Engineering (CICE2008). Zurich, Switzerland, 22–24 July 2008.
3. Barris C., Torres L., Comas J., Mias C. Cracking and deflections in GFRP RC beams: an experimental study. Composites: Part B, 55. 2013, pp. 580–590.
4. Mahdi Feizbahr, Jayaprakash, Morteza Jamshidi, Choong Kok Keong. Review on Various Types and Failures of Fibre Reinforcement Polymer. Middle-East Journal of Scientific Research 13 (10). 2013, pp. 1312–1318.
5. Pawłowskia D., Szumigałaa M. Flexural behaviour of full-scale basalt FRP RC beams – experimental and numerical studies. 7th Scientific-Technical Conference Material Problems in Civil Engineering (MATBUD’2015). Procedia Engineering 108. 2015, pp. 518–525.
6. Urbanski M., Garbacz A., Lapko A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Proceedings of the 11th International Conference on Modern Building Materials, Structures and Techniques. Procedia Engineering 57. 2013, pp. 1183–1191.
7. Klimov Y.A., Soldatchenko A.D., Witkowski J.A. Experimental study of composite reinforcement on the basis of basalt and glass roving for reinforcement of concrete structures. Beton i zhelezobeton. 2012. No. 2 (7), pp. 106–109 (In Russian).
8. Frolov N.V. Experimental research of concrete beams with glass-plastic bars in tensioned area. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2016. No. 2, pp. 46–50. (In Russian).

For citation: Antakov I.A. Features of behavior of flexural members with composite polymeric reinforcement under load. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 5, pp. 15–18. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-5-15-18

Finite Element Analysis of Stress-Strain State of Reinforced Concrete Pile Foundation Structures of a Residential Building under Low Temperatures Impact

Number of journal: 5-2018
Autors:

Nazarov T.A.,
Poselsky F.F.

DOI: https://doi.org/10.31659/0044-4472-2018-5-9-14
УДК: 624.142:624.012.45

AbstractAbout AuthorsReferences
The behavior of a reinforced concrete pile foundation at exceeding of permissible sizes of temperature blocks under the conditions of low temperature and on permafrost soils is considered. Materials of the building inspection are presented; the formation of cracks in foundation structures is shown. Strength calculation of the reinforced concrete pile foundation with vented under-floor space under the action of low temperature was performed in Ansys software. The stress-strain state beyond the elastic work of the structure with due regard for reducing the rigidity of the structure is analyzed with the use of the Willam-Warnke mathematical model. Dependences of strength and elastic-plastic deformation properties on the temperature are taken into account. Results of the numerical simulation are in good compliance with the inspection data and showed that the crack formation in the structures of the basement floor was caused by temperature-humidity deformations of concrete and reinforcement. The negative influence of internal angles in the plans of basement floors in the areas of niches and ledges which are concentrators of stresses and promote the crack formation in the structures is revealed. It is established that temperature stresses evident in the piles, in the abutment zones and the zones between the piles. Some recommendations on designing foundation structures in areas with low temperature are made.
T.A. NAZAROV, Bachelor,
F.F. POSELSKY, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

M.K. Ammosov North-Eastern Federal University (58, Belinsky Street, Yakutsk, 677000, Russian Federation)

1. Ivanova R.N. Lowest records of air temperature in Eurasia. Vestnik YaGU. 2006. No. 1. Vol. 3, pp. 13–19. (In Russian).
2. Almazov V.O., Istomin A.D. Influence of the water saturation on the temperature deformation of concrete under freezing. Impacts of external factors on hydraulic engineering constructions. Collection of scientific works. Moscow: MISI. 1986, pp. 162–169. (In Russian).
3. Istomin A.D., Kudryavtsev A.V. Behavior of statically indeterminable reinforced concrete members under negative temperatures. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 7, pp. 51–55. (In Russian).
4. Milovanov A.F., Samoylenko V.N. Uchet vozdeystviya nizkikh temperatur pri raschete konstruktsiy. Beton i zhelezobeton. 1980. No. 3, pp. 25–26. (In Russian).
5. Moskvin V.M., Kapkin M.M., Savitsky A.N., Yarmakov-skiy V.N. Beton dlya stroitel’stva v surovykh klimaticheskikh usloviyakh [Concrete construction in extreme climatic conditions]. Leningrad, Strojizdat., 1973. 172 p. (In Russian).
6. Mukha V.I., Abakumov Yu.N., Malkov Ye.N. Osnovy rascheta, konstruirovaniya i vozvedeniya sooruzheniy v Yakutskoy ASSR. Part 1: Teoreticheskie osnovy rascheta stroitel’nykh konstruktsiy na temperaturnye vozdeystviya [Fundamentals of design, construction and erection of structures in the Yakut ASSR. Vol. 1: Theoretical basis for calculating building structures for temperature effects.] Yakutsk: Yakutskoe knignoe izdatelstvo, 1976. 248 p. (In Russian).
7. Rekomendatsii po raschetu zhelezobetonnykh svaynykh fundamentov, vozvodimykh na vechnomerzlykh gruntakh, s uchetom temperaturnykh i vlazhnostnykh vozdeystviy [Recommendations for the calculation of reinforced concrete pile foundations, erected on permafrost soils, considering temperature and humidity effects] Moscow: Strojizdat, 1981. 47 p. (In Russian).
8. Ansys Mechanical APDL Theory Reference. Release 17.2. Canonsburg. 2009. 884 p.
9. Schnobrich W.C., Suidan M. Finite Element Analysis of Reinforced Concrete. ASCE Journal of the Structural Division, 1973, ST10, pp. 2109–2122.
10. Taylor R.L., Beresford P.J., Wilson E.L. A Non-Conforming Element for Stress Analysis. International Journal for Numerical Methods in Engineering, 1976, vol. 10, pp. 1211–1219.
11. Willam K.J., Warnke E.D. Constitutive Model for the Triaxial Behavior of Concrete. International Association for Bridge and Structural Engineering, 1975, vol. 19, pp. 43–57.
12. Wilson E.L., Taylor R.L., Doherty W.P., Ghaboussi J. Incompatible Displacement Models. Numerical and Computer Methods in Structural Mechanics. Edited by S.J. Fenves, et al. Academic Press, Inc. N. Y. and London. 1973, pp. 43–57.

For citation: Nazarov T.A., Poselsky F.F. Finite element analysis of stress-strain state of reinforced concrete pile foundation structures of a residential building under low temperatures impact. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 5, pp. 9–14. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-5-9-14

Long Research in Deformation Processes of Foundation Bases under Increased Loads

Number of journal: 5-2018
Autors:

Sokolov N.S.

DOI: https://doi.org/10.31659/0044-4472-2018-5-3-8
УДК: 624.15

AbstractAbout AuthorsReferences
Safety of operation of facilities according to GOST 27751–2014 «Reliability of building structures and foundations. The main provisions.» is regulated by the values of vertical settlements and tilts. The objects considered in this article belong to the structures of the first class of responsibility. As a result of the impact of increased loads reaching average pressures up to PIImt=680 kPa on their box-shaped foundations, they received settlements and tilts exceeding the maximum permissible values. In this case, the direction of the tilts during the erection of objects varies from 0 to 360о. Due to timely taking technical and technological methods during their erection, they are operated reliably.
N.S. SOKOLOV1, 2, Candidate of Sciences (Engineering), Associate Professor, Director (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 OOO NPF «FORST» (109a, Kalinina Street, 428000, Cheboksary, Russian Federation)
2 I.N. Ulianov Chuvash State University (15, Moskovskiy pr., 428015, Cheboksary, Russian Federation)

1. Sokolov N.S. Forecast of settlement of large-size foundations at high pressures on the base. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 3–8. (In Russian).
2. Egorov K.E., Sokolov I.S. Patterns of deformation of bases of foundations with a large area. Рарers of The All-Union Conference on foundation engineering «Accelerating scientific and technical progress infoundation engineering». Moscow: Stroiizdat, 1987, pp. 55.
3. Egorov K.E., Sokolov N.S. Features of deformations of bases of foundations with a large area. Papers of The Fourth All-Union Conference on foundation engineering. Moscow: Stroiizdat, 1987.Vol. 2, pp. 44.
4. Egorov K.E., Sokolov N.S. Features of the deformations of the bases of reactor departments of Atomic Electric Stations. Osnovaniya, fundamenty I mehanika gruntov. 1985. No. 4, pp. 14–17. (In Russian).
5. Sokolov N.S., Ushkov S.M. Features of calculating the sediment of large-sized foundations under elevated pressure on soils. Papers of the scientific and technical conference «Geotechnics of the Volga region-IV». 4.2. «Bases and foundations.» Saratov, 1989, pp. 34.
6. Sokolov N.S. Сollaboration of the bases and foundations of the Russian NPP. Trudy NIIOSP im. I.M. Gersevanova. 1988, Vol. 87, pp. 65. (In Russian).
7. Sokolov N.S. Deformation of the base of a circular foundation on a finite compressible layer. Trudy NIIOSP im. I.M. Gersevanova, 1987. Vol. 86, pp. 56. (In Russian).
8. Sokolov N.S., Ushkov S.M. Estimated soil resistance at the base of large-sized foundations at elevated pressure. V kn. Stroitrl’nye constructsii [Building structures]. Cheboksary, 1992, pp. 66–67.

For citation: Sokolov N.S. Long research in deformation processes of foundation bases under increased loads. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 5, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-5-3-8

Inadequacy of the RF Federal Laws and Normative Documents in the Absence of a List of “Objects of Protection” under Dangerous Natural and Anthropogenic Effects

Number of journal: 4-2018
Autors:

Maslyaev A.V.

DOI: https://doi.org/10.31659/0044-4472-2018-4-44-48
УДК: 699.841

AbstractAbout AuthorsReferences
Each Federal Law and normative document of the Russian Federation has a “terms and definitions” section which presents special terms with an explanation of their concepts. The meaning of these terms is in the explanation of their contents. But the analysis of main terms in the RF federal documents of a construction content shows that in the presence of the list of effects of dangerous natural and anthropogenic phenomena at the territory of Russia, the main list of “objects of protection” for which they are all developed is absent. The article presents the list of “objects of protection” under effects of dangerous natural and anthropogenic phenomena for including it as a separate paragraph of the RF Federal Law.
1. Ulomov V.I, Shumilina L.S. Komplekt kart oshhego sejsmicheskogo rajonirovanija territorii Rossijskoj Federacii OSR-97 [The Complete set of cards of the general seismic division into districts of territory of Russian Federa-tion ОСР-97]. Moscow: Оb’edinennyi institut fiziki zemli im. O.Yu. Shmidta. 1999. 57 р.
2. Masljaev A.V. Increase in the Loss of Health of the Population in Buildings During EarthquakeS in Federal Laws and Normative Documents of the Russian Federation. Zhilischnoe Stroitelstvo [Housing Construction]. 2017. No. 4, pp. 43–47. (In Russian).
3. Masljaev A.V. The analysis of the paradigm of the joint venture 14.13330.2014 on maintenance of seismoprotection of buildings of the raised responsibility at earthquake. Zhilischnoe Stroitelstvo [Housing Construction]. 2015. No. 8, pp. 51–55. (In Russian).
4. Aruin A.S., Zatsiorsky B. M. Ergonomicheskaya biomehanika [The Ergonomic biomechanics]. Мoscow: Ergonomicheskayа biomehanika. 1989. 256 p.
5. Masljaev A.V. Seismic stability of buildings and human health. Zhilischnoe Stroitelstvo [Housing Construction]. 2007. No. 5, pp. 23–24. (In Russian).
6. Masljaev A.V. Action of the population of Russia in aseismic buildings in case of an earthquake. Zhilischnoe Stroitelstvo [Housing Construction]. 2014. No. 11, pp. 44–47.(In Russian).
7. Masljaev A.V. Analys of conformity of federal laws and standard documents of the Russian Federation of the building maintenance to requirements of the constitution of the Russian Federation. Zhilischnoe Stroitelstvo [Housing Construction]. 2016. No. 11, pp. 38–43. (In Russian).
8. Maslyaev A.V. Seismic protection of settlements of Russia with due regard for «unpredictability of the next dangerous natural phenomenon». Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 11, pp. 43–47. (In Russian).
9. Maslyaev V.N. The building system of Volgograd oblast ignores protection of life of people in buildings at earthquake. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 1–2, pp. 66–68. (In Russian).

For citation: Maslyaev A.V. Inadequacy of the RF Federal Laws and normative documents in the absence of a list of “objects of protection” under dangerous natural and anthropogenic effects. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 44–48. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-44-48

Estimation of External Climatic Parameters for Air Treatment with Indirect Evaporative Cooling in Plate Heat Recovery Units

Number of journal: 4-2018
Autors:

Samarin O.D.,
Kirushok D.A.

DOI: https://doi.org/10.31659/0044-4472-2018-4-41-43
УДК: 697.001

AbstractAbout AuthorsReferences
Schematic diagram of processes in air conditioning unit, providing indirect evaporative cooling of supply air in the warm season with the use of plate recuperative cross flow heat exchanger designed for heat recovery of exhaust air in the cold period, is considered. Estimation of the necessary external climatic parameters for the modification of the known variants of this scheme, letting to apply the air humidifier designed specifically to increase the moisture content of the inflow in winter conditions for direct evaporative cooling the auxiliary stream in the warm period, through appropriate changes of direction of air flow in the installation is carried out. The correlation relationship between climatic parameters in accordance with the applicable regulatory documents of the Russian Federation is presented and the areas are identified where it is possible to use the reporting technology of air treatment to ensure the internal microclimate at the optimum level.
.D. SAMARIN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
D.A. KIRUSHOK, Engineer

National Research Moscow State University of Civil Engineering (26, Yarislavskoye Highway, 129337, Moscow, Russian Federation)

1. Kokorin O.Ya. Energosberegayushchiye sistemy konditsionirovaniya vozdukha [Energy saving air conditioning systems]. Moscow: LES. 2007. 256 p.
2. Kokorin O.Ya., Balmazov M.V. Energy saving air conditioning systems. Santekhnika, otoplenie, konditsionirovanie. 2012. No. 11, pp. 68–71. (In Russian).
3. Malyavina E.G., Kryuchkova O.Yu. Estimation of the energy consumption of the different central air condition systems. Nauchno-tekhnicheskiy vestnik Povolzhya. 2014. No. 4, pp. 149–152. (In Russian).
4. Malyavina E.G., Kryuchkova O.Yu. Economic estimation of central air conditioning systems with different air treatment schemes. Promyshlennoye i grazhdanskoye stroitel’stvo. 2014. No. 7, pp. 30–34. (In Russian).
5. Korolyova N.A., Fokin V.M., Tarabanov M.G. Development of recommendations on the design of energy efficient schemes of ventilating and air conditioning. Vestnik VolGASU. Seriya: Stroitel’stvo i arkhitektura. 2015. Vol. 41 (60), pp. 53–62. (In Russian).
6. Paiho S., Abdurafikov R., Hoang H. Cost analyses of energy-efficient renovations of a Moscow residential district. Sustainable Cities and Society. 2015. Vol. 14. № 1, pp. 5–15.
7. Hani Allan, Teet-Andrus Koiv. Energy Consumption Monitoring Analysis for Residential, Educational and Public Buildings. Smart Grid and Renewable Energy. 2012. Vol. 3. № 3, pp. 231–238.
8. Jedinák Richard. Energy Efficiency of Building Envelopes. Advanced Materials Research. 2013. (Vol. 855), pp. 39–42.
9. Korolyova N.A., Fokin V.M. Application of air conditioning evaporative cooling in modern buildings. Vestnik VolGASU. Seriya: Stroitel’stvo i arkhitektura. 2015. Vol. 39 (58), pp. 173–182. (In Russian).
10. Samarin O.D., Lushin K.I., Kirushok D.A. Energy saving scheme of air treatment with indirect evaporative cooling in plate recuperators. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 1–2, pp. 43–46. (In Russian).
11. Samarin O.D. Osnovy obespecheniya mikroklimata zdanii [Bases of providing microclimate of buildings]. Moscow: ASV, 2014. 208 p.
12. Matskevich I.P., Svirid G.P. Teoriya veroyatnostei i matematicheskaya statistika [Probability theory and mathematical statistics]. Minsk: Vysheishaya shkola, 1993. 269 p.

For citation: Samarin O.D., Kirushok D.A. Estimation of external climatic parameters for air treatment with indirect evaporative cooling in plate heat recovery units. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 41–43. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-41-43

Perspective High-Tech Construction Systems for Prefabricated Transformable Multistory Buildings

Number of journal: 4-2018
Autors:

Sychev S.А.

DOI: https://doi.org/10.31659/0044-4472-2018-4-36-40
УДК: 624.05

AbstractAbout AuthorsReferences
Industrial technologies for erection of prefabricated transformable buildings as an optimal combination of solutions make it possible to build multistory buildings with maximum possible compliance with energy efficient industrial high-speed erection of prefabricated buildings from the newest high-tech systems. Measures aimed at fulfilling the above requirements imply the implementation under the factory conditions of the complex of space-planning, structural, technological solutions as well as the provision of nstallation elements with modern, energy efficient engineering equipment and finishing. Thus, the complex use of basic provisions in practice makes it possible to create systems for construction of prefabricated buildings with pre-prepared foundations, roads, landscaping with engineering networks which allows for rapid construction of buildings from high-tech systems and operative connection of the building to pre-connected urban networks. The integral nature of “clean” construction sets a task, the solution of which is individually in each case, ensures sustainable development and is often innovative. The formation of the high-speed method of installation is to find rational solutions by means of successive analysis and changes in the components of labor and energy balance of the entire installation process.
S.A. SYCHEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Saint-Petersburg State University of Architecture and Civil Engineering (4, 2-ya Krasnoarmeiskaya ul., St. Petersburg, 190005, Russian Federation)

1. Asaul A.N., Kazakov Ju.N., Bykov B.JL, Knjaz’ I.P., Erofeev P.Ju. Teorija i praktika ispol’zovanija bystrovozvodimyh zdanij [Theory and practice of use of pre-fabricated buildings]. Saint Petersburg: Gumanistika, 2004. 463 р.
2. Bad’in G.M., Sychjov S.A., Makaridze G.D. Tehnologii stroitel’stva i rekonstrukcii jenergojeffektivnyh zdanij [Technology of construction of prefabrication buildings]. Saint Petersburg: BHV, 2017. 464 p.
3. Afanas’ev A.A. Tehnologija vozvedenija polnosbornyh zdanij [Technology of construction of prefabrication buildings]. Moskow: ASV, 2000. 287 p.
4. Verstov V.V., Bad’in G.M. Osobennosti proektirovanija i stroitel’stva zdanij i sooruzhenij v Sankt-Peterburge. Vestnik grazhdanskih inzhenerov. 2010. No. 1 (22), pp. 96–105. (In Russian).
5. Vil’man Ju.A. Osnovy robotizacii v stroitel’stve [Robotization bases in construction]. Moscow: Vysshaja shkola, 1989. 120 p.
6. Fudge, J., Brown, S. Prefabricated modular concrete construction. Building engineer. 2011, 86 (6), pp. 20–21.
7. Knaack, U., Chung-Klatte, Sh., Hasselbach, R. Prefabricated systems: Principles of construction. De Gruyter, 2012, 67 p.
8. Wang Y., Huang Z., Heng L. Cost-effectiveness assessment of insulated exterior wall of residential buildings in cold climate. International Journal of Project Management. 2007. No. 25 (2), pp. 143–149.
9. Swamy R.N. Holistic design: key to sustainability in concrete construction. Proceedings of the ICE – Structures and Buildings. 2001. No. 146 (4), pp. 371–379.
10. Lawson R.M., Richards. J. Modular design for high-rise buildings. Proceedings of the ICE – Structures and Buildings. 2001. No. 163 (3), pp. 151–164.
11. Nadim W., Goulding J.S. Offsite production in the UK: The Way forward? A UK construction industry perspective Construction Innovation: Information, Process, Management. 2010. No. 10 (2), pp. 181–202.
12. Day A. When modern buildings are built offsite. Building engineer. 2010. No. 86 (6), pp. 18–19.
13. Allen E., Iano J. Fundamentals of building construction: Materials and methods. J. Wiley & Sons. 2004, 28 p.
14. Head P.R. Construction materials and technology: A Look at the future. Proceedings of the ICE – Civil Engineering. 2001. No. 144 (3), pp. 113–118.
15. Viscomi B.V., Michalerya W.D., Lu L.W. Automated construction in the ATLSS integrated building systems. Automation in construction. 1994, No. 3, pp. 35–43.
16. Sychev S.A. Technological principles of rapid housing, the future of automated and robotic Assembly buildings. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 3, pp. 66–70. (In Russian).
17. Sychev S.A., Bad’in G.M. Perspektivnye tehnologii stroitel’stva i rekonstrukcii zdanij [Perspective technologies of construction and reconstruction of buildings]. Saint Petersburg: Lan’, 2017. 292 p.
18. Sychev S.А. Industrial technology of installation of prefabricated transformable buildings in the Far North. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 3, pp. 71–78. (In Russian).
19. Sychev S.А. Technology Of High-speed Installation Of Prefabricated Buildings Of A High-tech Building Systems. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 42–46. (In Russian).

For citation: Sychev S.А. Perspective high-tech construction systems for prefabricated transformable multistory buildings. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 36–40. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-36-40

Role of Load Application Scheme for Ensuring the Bearing Capacity of Building Structures

Number of journal: 4-2018
Autors:

Arleninov P.D.
Krylov S.B.

DOI: https://doi.org/10.31659/0044-4472-2018-4-30-33
УДК: 624

AbstractAbout AuthorsReferences
Considered examples from the archive of works of NIIZHB named after A.A. Gvozdev, in which an additional load, not provided previously and which requires strengthening of building structures, is applied to the already existing building. This can relate both to the new construction and to objects under reconstruction. In case of new construction, at the design stage, it is easy to increase cross-sections of main bearing elements or their reinforcement, for erected buildings – the situation is more complicated. It is shown that it is necessary to check the possibility of alternative variants of load application, since it often helps to avoid costly strengthening works.
P.D. ARLENINOV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
S.B. KRYLOV, Doctor of Sciences

JSC Research Center of Construction, Research Institute of Concrete and Reinforced Concrete named after A.A. Gvozdev (NIIZHB) (6, bldg. 1 2nd Institutskaya Street, 109428, Moscow, Russian Federation)

1. Arleninov P.D., Krylov S.B. Constructive decisions on decrease in efforts in elements of a reinforced concrete framework of the building of hydroelectric power station. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 7–10. (In Russian).
2. Arleninov P.D. Krylov S.B. Creation of a design model of a car ramp on the basis of inspection and natural testing. Zhilishchnoe Stroitel’stvo [Housing Construction]. No. 7. 2016, pp. 43–47. (In Russian).
3. Travush V.I., Konin D.V., Rozhkova L.S., Krylov A.S., Kaprielov S.S., Chilin I.A., Martirosyan A.S., Fimkin A.I. Experimental study of composite structures, working for eccentric compression. ACADEMIA. Arkhitektura i stroitel’stvo. 2016. No. 3, pp. 127–135.
4. Bondarenko V.M., Rimshin V.I. Primery rascheta zhelezobetonnykh i kamennykh konstruktsii. [Examples of calculation of reinforced concrete and stone designs]. Moscow: Student, 2014. 539 p.
5. Galustov K.Z.. Nelinejnaja teorija polzuchesti betona i raschet zhelezobetonnyh konstrukcij. [Nonlinear theory of creep of concrete and calculation of reinforced concrete designs]. Moscow: Izdatelstvo fiz.-mat. litеratury. 2006, pp. 94–110.
6. Shulyat’ev O.A., Mozgacheva O.A., Pospekhov V.S. Osvoe-nie podzemnogo prostranstva gorodov [Development of underground space of the cities]. Moscow: ASV. 2017 510 p.
7. Larionov E.A., Rimshin V.I., Vasil’kova N.T. Power method of assessment of stability of the compressed reinforced concrete elements. Stroitel’naja mehanika inzhenernyh konstrukcij i sooruzhenij. 2012. No. 2, pp. 77–81.
8. Rimshin V.I., Bondarenko V.M., Bakirov R.O., Nazarenko V.G. Zhelezobetonnye i kamennye konstrukcii [Reinforced concrete and stone designs]. Moscow: Student. 2010, 887 p.
9. Tamrazyan A.G., Orlova M.A. Pilot studies of the intense deformed condition of the reinforced concrete bent elements with cracks. Sovremennye problemy rascheta zhelezobetonnykh konstruktsii zdanii i sooruzhenii na avariinye vozdeistviya. Pod redaktsiei A.G. Tamrazyana, D.G. Kopanitsy. Moscow. 2016, pp. 507–514.
10. Alexander M.G. Aggregates and the Deformation Properties of Concrete. ACI Materials Journal. 1996. Vol. 93 (No. 6), pp. 569–577.
11. Nishiyama M. Mechanical properties of concrete and reinforcement. State-of-theart Report on HSC and HSS in Japan. Journal of Advanced Concrete Technology. Vol. 7 (No. 2), 2009, June, 152–182.

For citation: Arleninov P.D., Krylov S.B. Role of load application scheme for ensuring the bearing capacity of building structures. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 30–33. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-30-33

Renovation by City Blocks (Methodological Issues)

Number of journal: 4-2018
Autors:

Kievskiy L.V.
Kargashin M.E.

DOI: https://doi.org/10.31659/0044-4472-2018-4-15-25
УДК: 624

AbstractAbout AuthorsReferences
This work is devoted to an important stage of urban planning – detailing of citywide planned indicators of the territorial renovation program (by city blocks). Methodological issues concerning the nomenclature of city blocks renovation in Moscow, simulation of the renovation process, principles of the combination of city block schedules, sequence of renovation by city blocks, the use of starting sites for the “opening” of a city block, optimization of the integrated implementation schedule of the program in terms of the year limit of commissioning and the total duration of the program are considered. In the course of the study, geospatial queries and cartographical analysis were widely used. A mathematical model for determining the duration of city blocks renovation (on the basis of geometrical progression) and a set of criteria of ranking city blocks for inclusion in the citywide schedule are proposed. The concepts of a “basic” city block (with own starting sites) and a chain of city blocks, a sequence of adjacent city blocks the renovation of which will begin after the “basic” one, are introduced. A calculation module for automated formation of renovation schedules for each city block and a summary citywide schedule of implementing the renovation program by city blocks are described.
L.V. KIEVSKIY, Doctor of Sciences (Engineering), Professor, Chief Researcher (This email address is being protected from spambots. You need JavaScript enabled to view it.)
M.E. KARGASHIN, Programming Supervisor

OOO NPTS “City Development” (19, str. 3, Mira Avenue, Moscow, 129090, Russian Federation)

1. Kievskiy L.V., Abyanov R.R. Evaluation of the place and birth of a building complex in the economy of Moscow. «CITY DEVELOPMENT» collection of proceedings 2006–2014. Ed. by prof. L.V. Kievskiy. Moscow: SvR-ARGUS. 2014. 592 p. (pp. 53–53). (In Russian).
2. Kievskiy L.V. Housing reform and private construction sector In Russia. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2000. No. 5, pp. 2–5. (In Russian).
3. Kievskiy L.V. Housing development and international cooperation. Promyshlennoe i grazhdanskoe stroitel’stvo. 1996. No. 4, pp. 26–27. (In Russian).
4. Tikhomirov S.A., Kievskiy L.V., Kuleshova E.I., Kostin A.V., Sergeev A.S. Modeling of town-planning process. Promyshlennoe i grazhdanskoe stroitel’stvo. 2015. No. 9, pp. 51–55. (In Russian).
5. Kievskiy L.V., Kievskaya R.L., Mareev Yu.A. The main methodical directions of the formation of urban planning rating. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 12, pp. 3–8. (In Russian).
6. Kievskiy L.V. A mathematical model of renovation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 1–2, pp. 3–7. (In Russian).
7. Kievskiy L.V., Kargashin M.E., Parkhomenko M.I., Sergee-va A.A. An organizational-economic model of renovation. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 47–55. (In Russian).
8. Kievskiy I.L., Pljaskina A.T. Readiness of the market of construction materials and machines of the Central Federal District of Russia for the renovation program in Moscow. Promyshlennoe i grazhdanskoe stroitel’stvo. 2017. No. 11, pp. 88–93. (In Russian).
9. Kievskiy L.V., Sergeeva A.A. Evaluation of the effects of urban development measures on the renovation of the quarters of the existing buildings in Moscow and their impact on the need for construction machines. Naukovedenie Internet journal. 2017. Vol. 9, No. 6, pp. 1–17. (In Russian).
10. Kievskiy L.V., Sergeeva A.A. Renovation planning and effective demand. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 12, pp. 3–7. (In Russian).
11. Levkin S.I., Kievskiy L.V. Town planning aspects of the sectoral government programs. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 6, pp. 26–33. (In Russian).
12. Kievskiy L.V. Kompleksnost’ i potok (organizatsiya zastroiki mikroraiona) [The complexity and the flow (organization development of the neighborhood)]. Moscow: Stroyizdat. 1987. 136 p.
13. Shul’zhenko S.N., Kievskiy L.V., Volkov A.A. Improvement of the methodology for assessing the level of organizational preparation for concentrated construction. Vestnik MGSU. 2016. No. 3, pp. 135–143. (In Russian).
14. Gusakova E.A., Pavlov A.S. Osnovy organizatsii i upravleniya v stroitel’stve [Bases of the organization and management in construction]. Moscow: Yurait. 2016. 318 p.
15. Oleinik P.P. Organizatsiya stroitel’nogo proizvodstva [Organi-zation of construction production]. Moscow: ASV. 2010. 576 p.
16. Semechkin A.E. Sistemnyi analiz i sistemotekhnika [System analysis and system engineering]. Moscow: SvR-ARGUS. 2005. 536 p.
17. Kievskiy L.V., Kievskiy I.L. Prioritizing traffic city development framework. Promyshlennoe i grazhdanskoe stroitel’stvo. 2011. No. 10, pp. 3–6. (In Russian).
18. Kievskiy L.V. Applied organization of construction. Vestnik MGSU. 2017. No. 3, pp. 253–259. (In Russian).
19. Kievskiy L.V., Kievskaya R.L. Influence of town-planning decisions on the markets of real estate. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 6, pp. 27–31. (In Russian).
20. Kievskiy I.L., Grishutin I.B., Kievskiy L.V. Distributed reorganization of blocks (pre-project stage). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 1–2, pp. 23–28. (In Russian).

For citation: Kievskiy L.V., Kargashin M.E. Renovation by city blocks (methodological issues). Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 15–25. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-15-25

Renovation in Moscow: Problems and Solutions

Number of journal: 4-2018
Autors:

Bolsherotova L.V.
Bolsherotov A.L.

DOI: https://doi.org/10.31659/0044-4472-2018-4-9-14
УДК: 69.051

AbstractAbout AuthorsReferences
Problems of the renovation and problems of the life quality in areas of new development related to it are considered. The article focuses on the transport problem of Moscow and the problem of parking of private vehicles in bedroom districts in particular. When planning the realization of the Moscow renovation program, designers don’t take into account the changed auto-transport situation in Moscow. If 60 years ago, when the program of providing citizens with individual apartments was realized, the norm of parking places was 30 per 1000 citizens, at present, the real number of private vehicles is over 500 automobiles per 1000 citizens, but the renovation program does not take this into account practically. The methodology for assessment of a development area in settlements proposed in the article makes it possible to take into account completely the current situation in cities with auto-transport, to plan the residential development of areas in accordance with “the factor of concentration degree” of real estate per a unit of square of urbanized territory that provides the life quality, ecological safety, and health of residents.
L.V. BOLSHEROTOVA1, Candidate of Sciences (Engineering), (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.L. BOLSHEROTOV2, Doctor of Sciences (Engineering)

1 Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (49, Timiryazevskaya Street, 127550, Moscow, Russian Federation)
2 OOO “Bark-91” (9-1, Abramtsevskaya Street, 127550, Moscow, Russian Federation)

1. Korshunov A.N. The renovations program – an opportunity to increase quality of housing for muscovites. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 10, pp. 20–25. (In Russian).
2. Bolsherotov A.L. The method of calculation of degree of concentration of construction by transport criterion. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2012. No. 1, pp. 34–38. (In Russian).
3. Alekseev Yu.V., Leontyev B.V. Calculation of mashino-mest in the housing estate under elevated territories. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2014. No. 4, pp. 21–25. (In Russian).
4. Streltsova N.V. Choubin V.I. The prospects of implementation of the program of renovation of shabby housing in Moscow. Ekonomika i predprinimatel’stvo. 2017. No. 5–2 (82–2), pp. 912–915. (In Russian).
5. Titova S.S. Sheludyakov Ya.I. Building of industrial zones in moscow – plans and prospects. Sovremennye nauchnye issledovaniya i innovatsii. 2016. No. 12 (68), pp. 815–818. (In Russian).
6. Chekhloneva K.S. The law on renovation in g. moscow. Ekonomika i sotsium. 2017. No. 5–2 (36), pp. 1223–1225. (In Russian).
7. Mirzoyev G.B. Renovations program: coercion of the power or constitutional right of citizens. Uchenye trudy Rossiiskoi akademii advokatury i notariata. 2017. No. 2, pp. 5–9. (In Russian).
8. Filimonova I.I., Oak A.A Renovation of the housing estate with the factor analysis of the environment on the example of quarters no. 7, no. 8 south-eastern administrative district of Moscow. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2011. No. 5–2 (38), pp. 224a–227. (In Russian).
9. Prokofieva I.A. Five-storey apartment blocks – demolition or reconstruction: current trends. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2015. No. 4, pp. 43–46. (In Russian).
10. Ivanova O.A. Use of coefficient of quality of accommodation when developing address programs of development of the built-up territories. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2017. No. 8, pp. 43. (In Russian).
11. Sergeyev A.S. Modelling of town-planning process on the basis of standard approach. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2016. No. 4, pp. 3–7. (In Russian).

For citation: Bolsherotova L.V., Bolsherotov A.L. Renovation in Moscow: problems and solutions. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 3, pp. 9–14. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-9-14

Forecast of Settlement of Large-Size Foundations at High Pressures on the Base

Number of journal: 4-2018
Autors:

Sokolov N.S.

DOI: https://doi.org/10.31659/0044-4472-2018-4-3-8
УДК: 624.15

AbstractAbout AuthorsReferences
Relevant issues are the construction of the foundation of structures with high values of mean pressures under the foundation base. At PIImt reaching 680 kPa, the average settlement of the structures reaches S=200–580 mm. At the same time, vertical displacements sharply increase, after overcoming the average pressures constituting PIImt=250–300 кПА. Herewith, from 60% up to 70% of deformations of the bases occurs during the construction, and the rest 30%–40% – after the installation of the structures. With such high values of average pressures and settlements of foundations, the projected values of the vertical displacements of these structures during subsequent periods of their operation are of no small importance. The logarithmic function St=S0+A ln(1+Bt) is a successful mathematical dependence for the prediction of settlements of foundations at any subsequent period of time.
.S. SOKOLOV1,2, Candidate of Sciences (Engineering), Associate Professor, Director (This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 OOO NPF «FORST» (109a, Kalinina Street, 428000, Cheboksary, Russian Federation)
2 I.N. Ulianov Chuvash State University (15, Moskovskiy pr., 428015, Cheboksary, Russian Federation)

1. Egorov K.E., Sokolov I.S. Patterns of deformation of bases of foundations with a large area. Рарers of The All-Union Conference on foundation engineering «Accelerating scientific and technical progress infoundation engineering». Moscow: Stroiizdat, 1987, pp. 55.
2. Egorov K.E., Sokolov N.S. Features of deformations of bases of foundations with a large area. Papers of The Fourth All-Union Conference on foundation engineering. Moscow: Stroiizdat, 1987.Vol. 2, pp. 44.
3. Egorov K.E., Sokolov N.S. Features of the deformations of the bases of reactor departments of Atomic Electric Stations. Osnovaniya, fundamenty I mehanika gruntov. 1985. No. 4, pp. 14–17. (In Russian).
4. Sokolov N.S., Ushkov S.M. Features of calculating the sediment of large-sized foundations under elevated pressure on soils. Papers of the scientific and technical conference «Geotechnics of the Volga region-IV». 4.2. «Bases and foundations.» Saratov, 1989, pp. 34.
5. Sokolov N.S. Deformation of the base of a circular foundation on a finite compressible layer. Trudy NIIOSP im. I.M. Gersevanova, 1987. Vol. 86, pp. 56. (In Russian).
6. Sokolov N.S. Сollaboration of the bases and foundations of the Russian NPP. Trudy NIIOSP im. I.M. Gersevanova. 1988, Vol. 87, pp. 65. (In Russian).
7. Sokolov N.S. Deformation of the base of a circular foundation on a finite compressible layer. Trudy NIIOSP im. I.M. Gersevanova, 1987. Vol. 86, pp. 86. (In Russian).
8. Sokolov N.S., Ushkov S.M. Estimated soil resistance at the base of large-sized foundations at elevated pressure. V kn. Stroitrl’nye constructsii [Building structures]. Cheboksary, 1992, pp. 66–67.

For citation: Sokolov N.S. Forecast of settlement of large-size foundations at high pressures on the base. Zhilishchnoe Stroitel’stvo [Housing Construction]. 2018. No. 4, pp. 3–8. (In Russian). DOI: https://doi.org/10.31659/0044-4472-2018-4-3-8

https://www.traditionrolex.com/11